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PART I

GROUPING ITEMS

THAT SEEM ALIKE
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BACKGROUND

Taxonomists pioneered the grouping - or clustering - of plants and
animals to form species.

They needed consistent procedures (across scientists) to assign similar
specimens to the same groups.

Initially, clustering was done manually.
Taxonomists used measurements (grouping variables) to help their
task.
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DIFFERENT SUBSPECIES OF IRIS PLANTS
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MEASUREMENTS

IRIS DATA

Item sepal length sepal width petal length petal width

plant 1 5.1 3.5 1.4 0.2
plant 2 4.9 3.0 1.4 0.2
plant 3 5.4 3.9 1.7 0.4
...

...
...

...
...

plant 150 5.9 3.0 5.1 1.8
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FISHER - ANDERSON “IRIS DATA”
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JERISON (1973) “ALLOMETRY DATA”
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JERISON (1973) ALLOMETRY DATA
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FROM TAXONOMY TO MODERN CLUSTERING

IN STATISTICS AND COMPUTER SCIENCE, CLUSTERING
MEANS
“AUTOMATIC, COMPUTER AIDED, GROUPING OF
SIMILAR ITEMS BASED ON SOME SIMILARITY
MEASURE”.

THE NUMBER OF CLUSTERS (GROUPS) IS UNKNOWN
THE RELATIVE SIZE OF THE CLUSTERS IS UNKNOWN
FINDING ALL OF THAT FROM THE DATA IS A VERY
CHALLENGING STATISTICAL PROBLEM.
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MAIN GOALS OF CLUSTERING

TO FIND AND NAME HIDDEN GROUPS OF SIMILAR ITEMS

TO EXPLAIN AND INTERPRET THE GROUPS

TO SUMMARIZE AND DISPLAY THE GROUPS
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SOME EXAMPLES OF CLUSTERING APPLICATIONS

GROUPING DIFFERENT CANCER TUMORS BASED ON GENE
EXPRESSION DATA

FORMING SOCIAL CLASSES BASED ON SOCIO-ECONOMICAL
FEATURES

FINDING SIMILAR TYPES OF CUSTOMERS BASED ON
PURCHASING PATTERNS
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The Problem (In Math Notation)

d VARIABLES (FEATURES) ARE MEASURED IN n ITEMS

DATA TABLE

Item X1 X2 · · · Xd
1 x11 x12 · · · x1d
2 x21 x22 · · · x2d
3 x31 x32 · · · x3d
...

...
...

...
n xn1 xn2 · · · xnd

FIND PATTERNS IN THE NUMBERS TO IDENTIFY THE
GROUPS
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CLUSTER ALGORITHMS

DEVELOP/IMPLEMENT ALGORITHMS TO FIND
PATTERNS IN THE OBSERVATIONS

IDENTIFY GROUPS OF ITEMS THAT EXHIBIT SIMILAR
PATTERNS
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SIMPLE NUMERICAL ILLUSTRATION
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DIFFERENT APPROACHES TO CLUSTERING

CENTROID BASED CLUSTER

PROBABILITY MODEL BASED CLUSTER
DISTANCE BASED CLUSTER
POINT MIGRATING CLUSTER (PEAK HUNTING)
SPARSE CLUSTER
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CENTROID BASED CLUSTER

MINIMIZE A LOSS FUNCTION

J (C1, C2, ..., Ck ) =
k

∑
j=1

∑
i∈Cj
‖xi − tj‖2 , tj =

1
nk

∑
i∈Cj

xi

nk = number of items in Cj = #Cj

SIMILAR (IN SPIRIT) TO LS-REGRESSION

EXAMPLE: PACKAGE kmeans IN R
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CENTROID BASED CLUSTER

Van Aelst, Wang, Zamar and Zhu (2006) (CSD)

LINEAR GROUPING USING ORTHOGONAL REGRESSION

FIND GROUPS OF POINTS CLUSTERED AROUND LINEAR
VARIATIES

EXAMPLE: POINTS CLUSTERED AROUND CENTROIDS, LINES
AND PLANES IN HIGHER DIMENSIONAL SPACES
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LINES AND PLANES IN 3 DIMENSIONAL SPACES
(COMPUTER VISION)
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EXAMPLE: CLUSTER OF POINTS AROUND TWO
LINES
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CENTROID BASED CLUSTER

Garcia-Escudero, Gordaliza, San Martin, Van Aelst, and
Zamar(2009) (JRSS)

ROBUST EXTENSION OF LINEAR CLUSTERING USING
“IMPARTIAL TRIMMING”
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DIFFERENT APPROACHES TO CLUSTERING

MODEL BASED CLUSTERING

MODEL THE CLUSTERS USING A “MIXTURE”PROBABILITY
DENSITY

f (x) =
k

∏
i=1
[αi fi (x)]

δi , δi = 0, 1, 0 < αi < 1

k

∑
i=1

αi =
k

∑
i=1

δi = 1

MAXIMIZE THE LIKELIHOOD FUNCTION

EXPECTATION-MINIMIZATION (EM) ALGORITHMS
EXAMPLE: PACKAGE mclust IN R

Yan, Welch, and Zamar (2010) (CJS)

MODEL—BASED LINEAR CLUSTERING
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DISTANCE BASED CLUSTERING

USE THE NOTION OF “DISTANCE”BETWEEN TWO GROUPS
OF OBJECTS

MINIMUM, MAXIMUM OR AVERAGE DISTANCE
AGLOMERATIVE OR DIVISIVE

EXAMPLE PACKAGE hclust IN R
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MIGRATING POINTS (BUMP HUNTING)

ITERATIVELY, COMPUTE LOCAL AVERAGES AND MIGRATE
POINTS TOWARD THEM

Wang, Qiu and Zamar (2007) (CSDA)

MIGRATES POINTS TOWARD THEIR LOCAL MEDIANS
PACKAGE clues IN R

Pena, Viladomat, and Zamar (2012). (SADM).

NEAREST-NEIGHBORS MEDIAN CLUSTER ALGORITHM
IMPROVEMENT OVER clues
ALGORITHM “ATTACTORS”AVAILABLE FOR MATHLAB
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PART II

THE NEEDLE

IN THE HAYSTACK
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DRUG DISCOVERY

BIOLOGICAL TARGET: TO CURE OR PALLIATE A MEDICAL
CONDITION

EXAMPLES:

GAUCHER’S DISEASE

CHRONIC IMFLAMATION

HIV

LUNG CANCER CELLS
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THE HAYSTACK

SOME STUDIES BEGIN WITH 3000 TO 5000 “CANDIDATE
COMPOUNDS”

THESE COMPOUNDS ARE EXAMINED IN BIOLOGICAL ASSAYS

BIOLOGICAL ASSAYS ARE EXPENSIVE AND TIME
CONSUMING
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THE NEEDLES

A SMALL FRACTION OF THE CONSIDERED COMPOUNDS ARE
ACTIVE (AND DESERVE FURTHER INVESTIGATION)

SEARCHING FOR THE GOLDEN NEEDLE
SOME OR EVEN ALL THE ACTIVE COMPOUNDS MAY BE
ULTIMATELY DISCARDED FOR OTHER REASONS SUCH AS
UNDEDESIRABLE SIDE EFFECTS.
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EXAMPLES OF BIOLOGICAL ASSAYS

ASSAY
AID348 AID362 AID364 AID371

NUMBER OF COMPOUNDS 4946 4279 3311 3312
NUMBER OF ACTIVES 48 60 50 278
FRACTION OF ACTIVES 0.0097 0.0140 0.0151 0.0839
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ENLARGING THE HAYSTACK

NEED TO EXAMINE A MUCH LARGER LIST OF COMPOUNDS

IDEA: SORT THE COMPOUNDS SO THAT THE ACTIVE ONES
ARE CLOSER TO THE TOP

BRING THE NEEDLES TO THE TOP OF THE LIST!
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DESCRIPTOR SETS

ASSAY
DESCRIPTOR SET AID348 AID362 AID364 AID371
ATOM PAIRS 367 360 380 382
BURDEN NUMBERS 24 24 24 24
CARHART ATOM PAIRS 1795 1319 1585 1498
FRAGMENT PAIRS 570 563 580 580
PHARMACOPHORES 122 112 120 119
NUMBER OF VARIABLES

The descriptor sets are generated by the software PowerMV (Liu,
Feng, and Young, 2005).
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EVALUATING COMPETING SORTING PROCEDURES

APPROPRIATE MEASURES FOR THIS EVALUATION WERE
DEVELOPED TO THIS END

I’LL DESCRIBE TWO OF THEM (THE MOST POPULAR ONES)
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HIT CURVE
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AVERAGE HIT RATE

SYMBOL MEANING

N NUMBER OF COMPOUNDS IN THE ASSAY
A NUMBER OF ACTIVE COMPOUNDS
A(t) NUMBER OF ACTIVES AMONG THE

FIRST t COMPOUNDS
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AVERAGE HIT RATE (CONTINUED)

POSITION OF THE ACTIVE COMPOUNDS IN THE SORTED LIST:

t1 < t2 < t3 < · · · < tA

HIT RATES:

H (tj ) =
A (tj )
tj

AVERAGE HIT RATE

H =
H (t1) +H (t2) + · · ·+H (tA)

A
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DEALING WITH VERY LARGE DESCRIPTOR SETS

PROBLEM: DESCRIPTOR SETS HAVE A LARGE NUMBER OF
VARIABLES

SOME OF THEM ARE USELESS (PURE NOISE)
SOME OF THEM ARE HIGHLY COLINEAR (REDUNDANT)

CLASSICAL SOLUTION TO THIS PROBLEM: VARIABLE
SELECTION (REGULARIZATION)

RIDGE REGRESSION
LASSO
LARS
RANDOM FOREST (IT HAS BUILT-IN VARIABLE SELECTION
CAPABILITY)
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PHALANX: A NEW REGULARIZING FRAMEWORK

IDEA: INSTEAD OF SORTING THE COMPOUNDS WITH A
SINGLE REGULARIZED MODEL, FORM SEVERAL MODELS
(CALLED PHALANXES) AND COMBINE THEM (MODEL
AVERAGING)

EACH MODEL MUST INCLUDE VARIABLES THAT WORK WELL
TOGETHER
THIS RESEMBLES THE ANCIENT MILITARY FORMATIONS
USED BY ALEXANDER THE GREAT AND HIS FATHER
PHILIPPO II OF MACEDONIA.
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MACEDONIAN PHALANX
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PHALANX: A NEW REGULARIZING FRAMEWORK

WE CREATED AN ALGORITHM TO SELECT THE PHALANXES
AND PRODUCE THE COMBINED SORTING

UBC FILED A PRELIMINARY U.S.A. PATENT FOR THIS
“INVENTION”.

OUR ALGORITHM IS A BIT INVOLVED AND WILL NOT BE
DESCRIBED HERE

PLEASE, REFER TO A FORTHCOMING PAPER (TOMAL, WELCH
AND ZAMAR, 2013) AND TOMAL’S Ph.D. DISSERTATION (UBC)

Ruben Zamar Deapartment of Statistics UBC ()Robust Estimation June 27, 2013 70 / 72



PHALANX: A NEW REGULARIZING FRAMEWORK

WE CREATED AN ALGORITHM TO SELECT THE PHALANXES
AND PRODUCE THE COMBINED SORTING

UBC FILED A PRELIMINARY U.S.A. PATENT FOR THIS
“INVENTION”.

OUR ALGORITHM IS A BIT INVOLVED AND WILL NOT BE
DESCRIBED HERE

PLEASE, REFER TO A FORTHCOMING PAPER (TOMAL, WELCH
AND ZAMAR, 2013) AND TOMAL’S Ph.D. DISSERTATION (UBC)

Ruben Zamar Deapartment of Statistics UBC ()Robust Estimation June 27, 2013 70 / 72



PHALANX: A NEW REGULARIZING FRAMEWORK

WE CREATED AN ALGORITHM TO SELECT THE PHALANXES
AND PRODUCE THE COMBINED SORTING

UBC FILED A PRELIMINARY U.S.A. PATENT FOR THIS
“INVENTION”.

OUR ALGORITHM IS A BIT INVOLVED AND WILL NOT BE
DESCRIBED HERE

PLEASE, REFER TO A FORTHCOMING PAPER (TOMAL, WELCH
AND ZAMAR, 2013) AND TOMAL’S Ph.D. DISSERTATION (UBC)

Ruben Zamar Deapartment of Statistics UBC ()Robust Estimation June 27, 2013 70 / 72



PHALANX: A NEW REGULARIZING FRAMEWORK

WE CREATED AN ALGORITHM TO SELECT THE PHALANXES
AND PRODUCE THE COMBINED SORTING

UBC FILED A PRELIMINARY U.S.A. PATENT FOR THIS
“INVENTION”.

OUR ALGORITHM IS A BIT INVOLVED AND WILL NOT BE
DESCRIBED HERE

PLEASE, REFER TO A FORTHCOMING PAPER (TOMAL, WELCH
AND ZAMAR, 2013) AND TOMAL’S Ph.D. DISSERTATION (UBC)

Ruben Zamar Deapartment of Statistics UBC ()Robust Estimation June 27, 2013 70 / 72



PHALANX PERFORMANCE

PHALANX PERFORMS BETTER (COMPARED TO STATE OF
THE ART TECHNOLOGY) WHEN

1 THE TRAINING DATA IS “VARIABLES RICH”AND
“OBSERVATIONS POOR”

2 THERE ARE FEW RARE CASES
3 IN SUMMARY: THE HARDEST THE SORTING PROBLEM IS,
THE MOST PHALANX OUTPERFORMS AVAILABLE PROCEDURES
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PHALANX DIVERSITY

MODERN HIGH DIMENSIONAL PROBLEMS (E.G. GENOMICS,
PROTEOMCS, FINANCE, ASTRONOMY) ARE COMPLEX AND
MAY HAVE SEVERAL INTERNAL DRIVING FORCES

PHALANXES ARE CAPABLE OF CAPTURING AND EXPLOITING
THIS DIVERSITY

INSTEAD OF “CURSING DIMENSIONALITY”PHALANX
“BLESSES DIMENSIONALITY”.
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