

ALIMENTOS FUNCIONALES. FUENTES NATURALES DE PEPTIDOS BIOACTIVOS

Maria Cristina Añon

CIDCA CONICET - UNLP La Plata, Argentina

Componentes presentes en alimentos funcionales

Fibra dietética

Azúcares de baja energía

Fitoesteroles

Ácidos grasos insaturados

Vitaminas y minerales

Antioxidantes

Probióticos

Proteínas

Propiedades Nutricionales

materia y aas esenciales

Propiedades Biológicas ingredientes potenciales que promueven la salud del consumidor

Proteínas bioactivas en leche

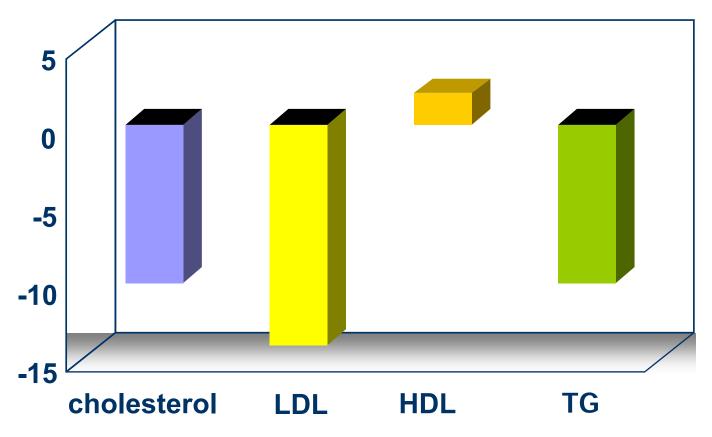
Enzimas

Lactoperoxidasa, lisozima, xantioxidasa, glucosaoxidasa, etc.

Acción protectora

Inmunoglobulinas, lactoferrina, transferrina, proteosa-peptona

Factores de crecimiento


EGF, TGF, IGF-1

Hormonas

Calcitonina, insulina, prolactina, relaxina, etc.

Metabolismo lipídico

Estudios clínicos en humanos - Meta-análisis Efecto de dietas a base de proteínas de soja

Anderson et al. (1995)

¿Cuál es el mecanismo responsable?

Cultivo celular de hepatoma humano Hep G2 + globulina 75

Activación de receptores LDL- Captura y degradación de LDL en f(dosis)

Subunidades α 'y α de β-conglicinina [



PÉPTIDO

Lovati et al. (1989, 1992, 1996, 2000)

Péptidos bioactivos

Son péptidos derivados de proteínas de la dieta que ejercen un beneficio a nivel fisiológico independiente de su función nutricional

Características de los péptidos bioactivos

En general poseen entre 3 y 20 aas, con aas característicos

Actúan como moduladores y compuestos regulatorios

Su actividad es función de la composición de aas y de la secuencia

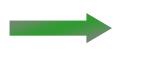
En la base BIOPEP se encuentran registrados 1968 péptidos bioactivos de distinto origen

Caracteristicas de algunos tipos de biopeptidos

Antioxidantes

Alta cantidad de His y aa hidrofóbicos

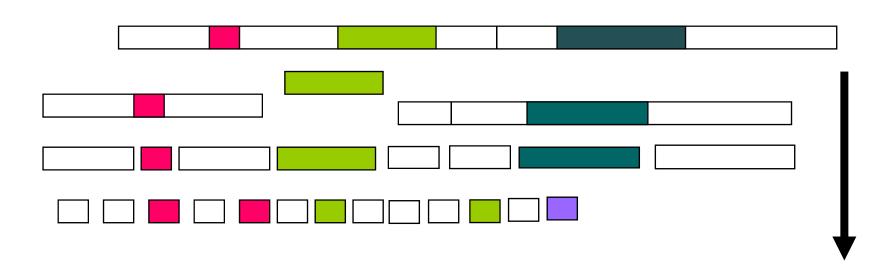
Antitromboticos


Ile, Lys, Asp

Hipocolesterolemicos

Baja relacion

Baja relacion
Met/Gly y Lys/Arg
alto contenido de aa
hidrofobicos

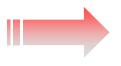

Antiobesidad y antitumoral

Péptidos largos

Liberación de péptidos encriptados

- Proceso de digestión in vivo
- Hidrólisis enzimática in vitro
- Acción de microorganismos
- Combinación de procedimientos

hidrólisis


Etapas a seguir en el estudio de biopéptidos

Obtención de péptidos

Búsqueda de la actividad biológica Ensayos de simulación e *in vitro*

Separación y caracterización del o los péptidos responsables de la actividad

Ensayos de actividad *in vivo* y en humanos

Peptidos bioactivos en productos lacteos fermentados

Maduración de quesos Parmigiano, manchego, muzzarella, gouda, emmental, entre otros

Actividad ACE
Fosfopeptidos

Inmunomodulación

Act. antimicrobiana

Leches acidas, yogur, dahi

Kohoronen y col. 2006

Biopéptidos de origen lácteo

Antimicrobianos

Casecidina, casocidina isracidina kappacina lactoferricina

Poseen aa básicos que forman un bucle de a-hélice en C ter Opiodes

Casomorfinas
exorfina
alactorfina
Blactorfina
casoxinas
antagonistas
lactoferroxinas

Transportadores

SerP-SerP-SerP-Glu-Glu la carga los hace resistentes a proteólisis

Antitrombóticos

Met-Ala-Ile-Pro-Pro-Lys-Lys-Asn-Gln-Asp-Lys secuencia semejante al γ-fibrinógeno

Casoplatelinas inhiben agregación de plaquetas Se determinó la presencia de péptidos antitrombóticos en plasma de recién nacidos y en estómago, duodeno y sangre de adultos

Inmunomoduladores

Estimulan la actividad de los fagocitos y modulan la función de los linfocitos

Antihipertensivos

Casoquininas lactoquininas inhibidores de ACE

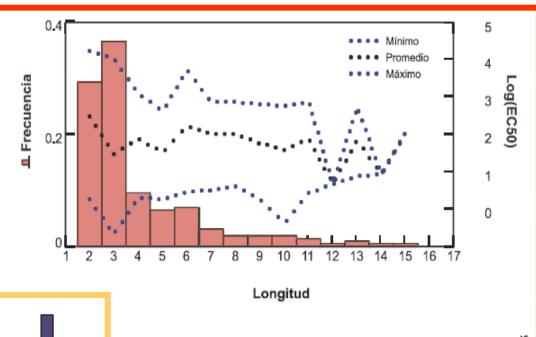
Sistema ACE

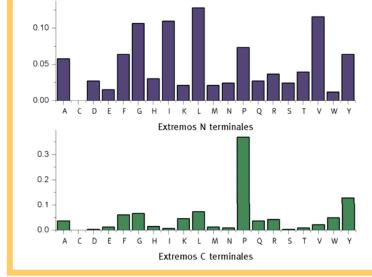
Inhibidores de ACE captopril, enalpril, etc.

ACE

angiotensina I decapéptido

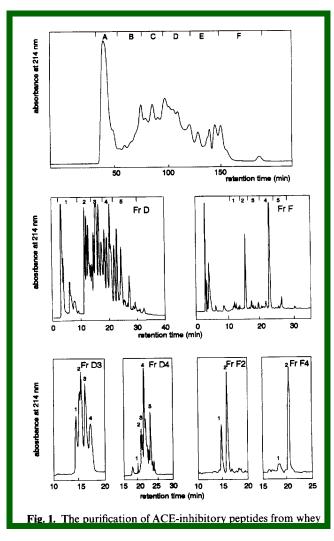
angiotensina II octapéptido

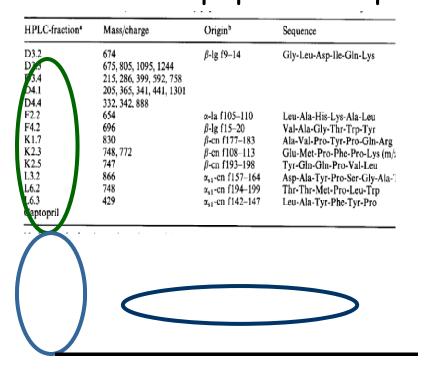

Se previene la degradación de bradiquina que es vasodilatador


aumenta la presión por vasoconstricción

afecta la síntesis y liberación de aldosterona

Actividad antihipertensiva


Longitud de péptidos activos : 2-15 aa

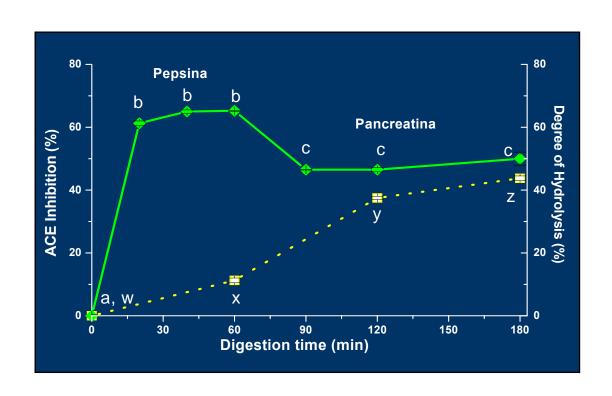


Péptidos activos poseen Pro en el Cterminal y residuos hidrofóbicos en el extremo N-terminal

Actividad ACE de hidrolizados de caseina y suero de leche

Hidrólisis con pepsina+ tripsina

IC50 51 a 580 μ M Captopril 0.007 μ m


Actividad ACE de hidrolizados de soja

péptidos de soja

- ✓ fermentación
- √ digestión in vitro

Modelos animales Ensayos "in vitro"

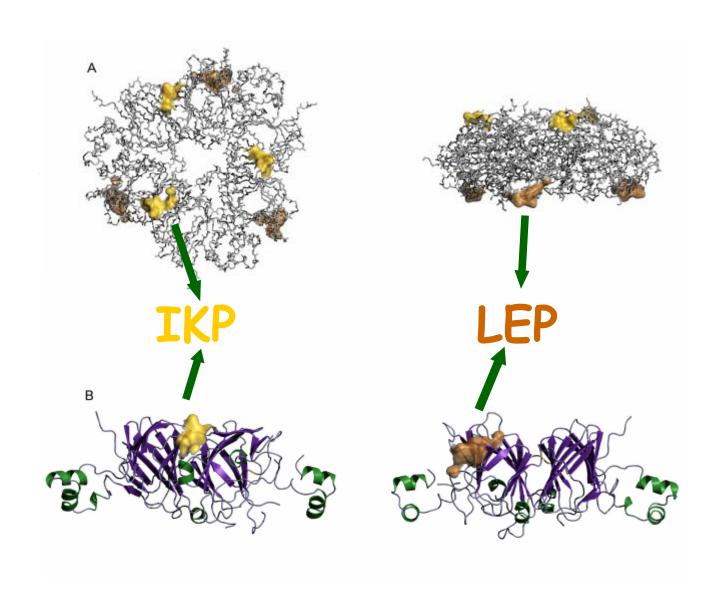
Péptidos de menor MM y más hidrofóbicos fueron más activos

Wendy et al 2005

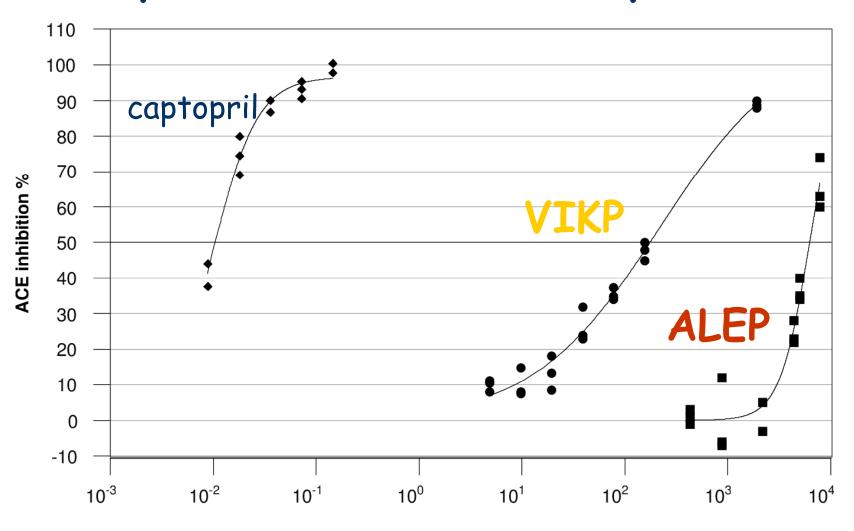
Alimentos fermentados tempeh y natto

hidrólisis con distintas proteasas

Simulación del proceso digestivo


Separación de péptidos (HPLC, espectroscopía de masa) Determinación de actividades biológicas

Pép. A (natto-pronasa) I C_{50} - Ih ACE - 0.2 \pm 0.1 μ M


Pép. E (tempeth-prot. riñon) I C_{50} - Ih ACE - 0.6 ± 0.1 μM y actividad antioxidante

Pép. G (idem anterior) I C_{50} ac. antitrombótica - 9.8 \pm 0.9 μM

Ensayos de simulación in sílico

Inhibición de la Actividad ACE Péptidos sintéticos - Ensayo *in vitro*

Inhibitor concentration (µM)

Comparación de IC50

Comparación de valores de EC50					
Origen	EC50 (mg/mL)	EC50 (μM)	Referencia		
A. Mantegazzianus, Hid. F (GH 45%)	0,12 ± 0,02	415 ± 70	Este trabajo.		
A. Mantegazzianus, Hid. G (GH 65%)	0,12 ± 0,02	600 ± 100	Este trabajo.		
Suero leche cabra, Termolisina 24 horas.	0,081	n/d	Hernández-Ledesma, 2002		
Suero leche cabra, Quimotripsina 24 horas	0,296	n/d			
Suero leche cabra, Proteinasa K 24 horas	0,038	n/d			
Suero leche cabra, Tripsina 24 horas	0,196	n/d			
Suero leche bovina, GH 18%	0,202	n/d	van der Ven, 2002		
Suero leche bovina, GH 31%	0,155	n/d			
Soja, Alcalasa 12 horas.	0,32	n/d	Wu, 2002		
Plasma bovino, Flavourzyme GH 43%	1,08	n/d	Wanasundara, 2002		
Ovoalbúmina, Pepsina	0,055	n/d	Miguel, 2004		
Germen trigo, Alcalasa 8 h	0,37	n/d	Matsui, 1999		
IKY (tripéptido)	8,9 10 ⁻⁵	0,21	Wu, 2006		
SVY (tripéptido)	0,625	1700			
FP (dipéptido)	0,083	316			
AW (dipéptido)	5,1 10 ⁻³	18,6			

os nombres de los péptidos puros se asignaron utilizando el código de aminoácidos de cuerdo a su secuencia.

Matrices en las que se han detectado péptidos bioactivos

Antioxidante

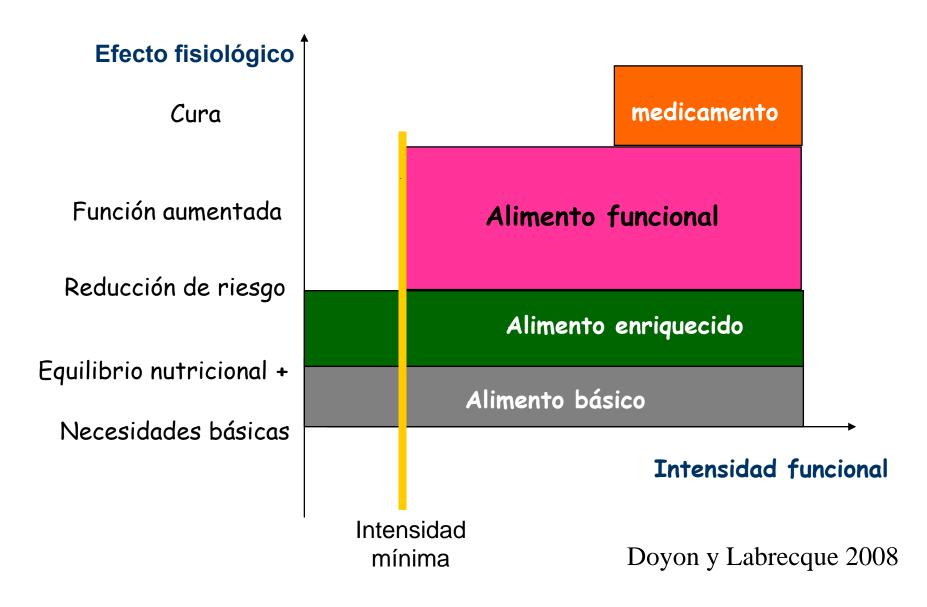
Antitrombótica

Hipocolesterolémica

Hipotrigliceridémica

Antihipertensiva

Antiobesidad


Antimicrobiana

Inmunomodulatoria

Conceptos claves en la definición de un alimento funcional

- > el concepto de aportar beneficios para la salud es central
- ➤ la naturaleza del alimento ser o asemejarse a un alimento tradicional
- > el nivel de función más allá de la función nutricional
- > el perfil de consumo debe ser parte de la dieta normal

Fronteras del universo de los alimentos funcionales

Alimentos funcionales hipotensores

EJEMPLOS DE ALIMENTOS FUNCIONALES HIPOTENSORES EN EL MERCADO MUNDIAL

Producto	ucto Empresa Tipo de alimento		Péptido/s bioactivo/s
Calpis AMEEL S (Japón) Calpico (Europa)	Calpis Co., Japón	Leche agria	VPP + IPP
Evolus	Vallo, Finlandia	Leche fermentada	VPP + IPP
BioZate	Davisco, EE.UU.	Hidrolizado de β-LG	Péptidos de suero de leche
C 12 Peption	DMV, Holanda	Ingrediente	FFVAPFPEVFGK de Caseína
Peptide Soup	NIPPON, Japón	Sopa	Péptidos de pescado
Casein DP Peptio Drink	Kanebo, Japón	Refresco	FFVAPFPEVFGK de Caseína

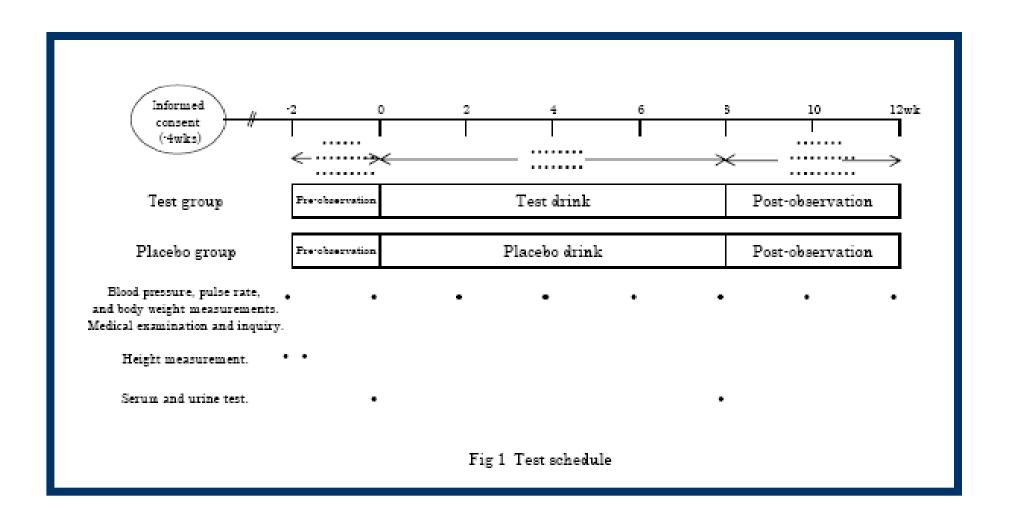
Nippon Supplement, Inc.

Otros alimentos funcionales disponibles en el mercado

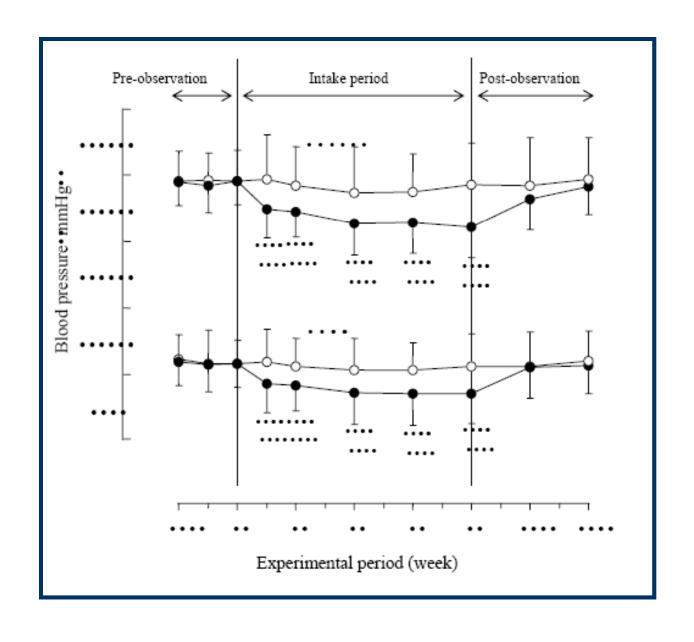
Producto	Empresa	Alimento	Efecto
Bio-PURE GMP	Davisco, USA	Glicomacropeptido	antitrombotico
		Hidrolizado de proteínas	antimicrobiano anticariogénico
Cholesteblock	Kyowa Hakko	Peptidos de soja unido a PL	hipocolesterolé mico
		Soft drink	

Evolus - Double effect - 2008

Leche fermentada con L. helvéticus



Controla la presión sanguínea Reduce el colesterol plasmático


Componentes: esteroles de origen vegetal y biopeptidos (VPP y IPP)

Se realizaron ensayos *in vitro*, *in vivo* y pruebas con humanos

Esquema de los estudios realizados con humanos

Datos obtenidos

Producción de péptidos bioactivos Aproximación tecnológica

Preparación de los péptidos

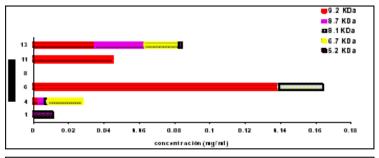
Hidrólisis química o enzimática in vivo e in vitro

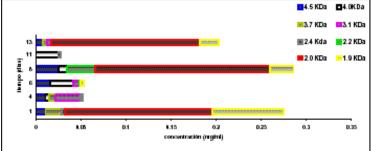
Ingeniería genética - Biopharming

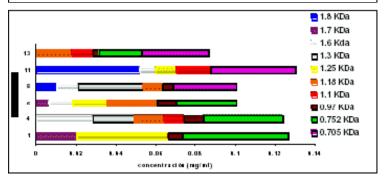
Tecnología de DNA recombinante (péptidos largos)

Caracterización de péptidos bioactivos

Separación y purificación Determinación de propiedades fisicoquímicas Evaluación de la bioactividad *in vitro* e *in vivo*


Consideraciones a tener en cuenta para los alimentos funcionales con biopéptidos


- ✓ Complejidad de la matriz del alimento.


 Interacción del o los biopéptidos con otros componentes
 - ✓ Efecto de las condiciones de procesamiento
- ✓ Cambios durante el período de vida útil

Algunos ejemplos

Producto fermentado - cambio del contenido de péptidos

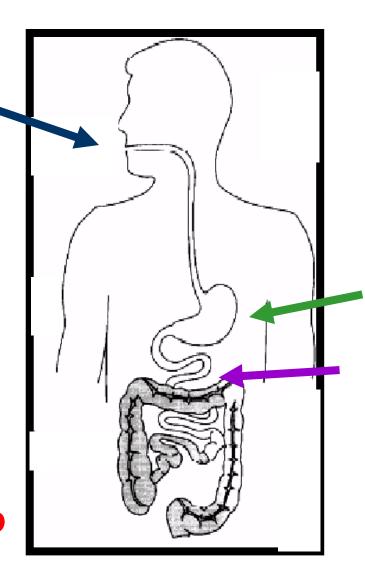
tratamiento térmico

Desnaturalización

Desfosforilación, ej. de caseína

Destino de los biopéptidos

Alimento funcional conteniendo biopéptidos


digestión absorción

ces afectado?

transporte

¿llega en la concentración adecuada?

cun único punto de acción o puntos múltiples?

Desafíos futuros para obtener alimentos funcionales con biopéptidos

Desarrollo de alimentos funcionales sin efectos colaterales de los biopéptidos adicionados y retener su estabilidad durante el período de vida útil

Liberación y obtención Efecto Sitio de acción

PROBLEMAS A SORTEAR: degradación durante la digestión, mala absorción, baja concentración en sangre o el tejido específico, modificación de actividad por el procesamiento o interacción con otros ingredientes