
NOVEL MATHEMATICAL AND 
COMPUTATIONAL METHODS FOR 
SCIENCE AND ENGINEERING

Oscar P. Bruno

Computing and Mathematical Sciences, California Institute of Technology, 
Pasadena, USA
E-mail: obruno@caltech.edu

Abstract These notes present a conceptual narrative 
concerning a new class of highly accurate and efficient 
methods for the numerical solution of partial differential 
equations. This contribution, which is not offered as a text 
for specialists, has as its main objective to convey, to a 
presumptive audience with diverse scientific and techno-
logical interests, the character of these new methodologies, 
as well as their potential for effective computational 
simulation in vast areas of science and engineering. 

Resumen Nuevos métodos matemáticos y computa-
cionales para las ciencias y la ingeniería. Estas notas 
presentan una descripción conceptual de una nueva clase 
de métodos altamente precisos y eficientes para la solución 
numérica de ecuaciones en derivadas parciales. Este 
aporte, que no se presenta como un texto para especialis-
tas, tiene como principal objetivo trasmitir, a una presunta 
audiencia con diversos intereses científicos y tecnológicos, 
el carácter de estas nuevas metodologías, así como su 
potencial para la simulación computacional efectiva en 
vastas áreas de ciencia e ingeniería.
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1. Introduction

In spite of enormous progress in many areas of mathematics, numerical 
analysis, computational science and computer hardware, the efficient and 
reliable computational simulation of physical phenomena has continued to 
pose significant challenges in many scientific and technological contexts. In 
recent years, novel “fast”, “high-order” and “spectral” techniques have emerged 
which can effectively tackle highly complex natural and engineered structures. 
The purpose of these notes is to present a conceptual narrative concerning 
these new computational methods. In this spirit, and to facilitate a descriptive 
presentation, bibliographical citations are avoided in this text—with the 
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expectation that the nomenclature used should easily enable an interested 
reader to access full references without difficulty. 

 
As a specific motivating example, which will facilitate the introduction 

of a number of key concepts, we first consider the important problem of 
propagation and scattering of electromagnetic waves. This is a problem of 
significant impact on a wide range of areas of science and engineering, 
including optics, remote sensing, photonics, electronics, communications, etc. 
Numerical methods based on finite-element (FEM) and finite-difference (FD) 
approximations for such problems are accurate and capable of fine spatial 
resolution. These methods do require use of fine volumetric discretizations, 
however, not only in specific regions near boundaries, to adequately model 
complex engineered structures, but also throughout the computational 
domain to counter their inherent numerical dispersion and diffusion errors 
(described below). For problems with general temporal dependence, further, 
these fine spatial discretizations require use of small time-steps to ensure 
stability in the time evolution. As a result, electromagnetic simulations of 
large (and possibly complex) structures by means of volumetric 
discretizations require vast amounts of computing time and memory and have 
remained impractical. Fortunately, novel techniques have recently emerged 
that have significantly expanded the applicability of numerical methods to 
configurations previously not considered tractable within any reasonable 
accuracy.  

 
Fig. 1. The left image presents a notional structure made of a material that is penetrable to 

electromagnetic radiation such as e.g., visible light. The structure is 80 wavelengths at its widest; at 
wavelengths of the order of 1 μm, the structure is approximately 80 μm in size. Structures of such 

sizes, and even smaller, are designed, engineered, and manufactured, with features of the order of a 
single wavelength in some cases, to deliver a particular effect within a photonic structure on a 

photonic chip. The simulation, produced by this author in collaboration with A. Pandey, was obtained 
by means of a Chebyshev discretization of the relevant Helmholtz equation in conjunction with a 

Green-function formulation. 

 
To motivate our description, we consider the simple notional example 

depicted in Fig. 1. The image on the left presents a material structure made 
of a “penetrable” material—in this case, a material, such as e.g., silicon or 
glass, that is at least partially transparent to electromagnetic illumination at 
certain frequencies. As light impinges on the object, part of it reflects directly, 
as from glass or water, and, as in such cases, part of the light penetrates the 
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material. For the type of material considered in the figure, the propagation 
wavelength in the material is smaller than that in the ambient free space: as 
can be appreciated in the figure, the interior waves oscillate spatially on a 
finer scale than those in the exterior. 

 
The illuminating radiation, incident from the left in the present 

example, thus impinges upon the obstacle, and gives rise to a highly complex 
pattern of reflected and transmitted waves, wherein transmitted waves travel 
within the material and then themselves impinge upon other material 
boundaries, giving rise to multiple scattering, each time including reflection 
and transmission, etc., in accordance with Maxwell’s equations. 

 
In classical FD and FEM numerical methods, the continuum differential 

equations governing a particular physical problem, such as the Maxwell 
equations in our present illumination example, are discretized via 
approximation of derivatives by means of FD or FEM approximations. Thus, 
in the case illustrated in the figure, a fine volumetric discretization would 
need to be utilized—at the very least, of the order of a few points per 
wavelength, since, clearly, it would be impossible to resolve the details in the 
electromagnetic field with discretizations that contain one or fewer points per 
wavelength. And, if the details of fields are not resolved at the level of the 
wavelength, then the accuracy of the solution overall is compromised, 
potentially resulting in completely incorrect predictions. 

 
The use of a fixed number of points per wavelength is therefore 

manifestly necessary, but unfortunately it is generally not sufficient to 
maintain a prescribed accuracy in general solutions of the Maxwell equations. 
To demonstrate this, we consider an experiment in which a fixed number of 
points per wavelength are used for the solution of problems for smaller and 
smaller wavelengths, with a fixed overall geometry–such as, say, the one 
depicted in Fig. 1. At a fixed number of points per wavelength, the error in 
approximation of continuous derivatives by discrete derivatives remains 
constant, but the number of times such approximations are used grows as the 
wavelength decreases and the number of wavelengths spanned by the domain 
grows. This leads to so-called “dispersion” errors that grow without bound as 
the number of wavelengths spanned by the domain grows. Equivalently, to 
maintain a certain accuracy, the number of points used per wavelength must 
be increased. 

 
The precise selection of numbers of points per wavelength that are 

necessary to maintain accuracy depend on the order of accuracy inherent in 
the finite-difference or finite-element used for the approximation of spatial 
derivatives. Algorithms of higher orders of accuracy give rise to slower growth 
in the number of discretization points necessary to maintain accuracy as the 
size of the problem grows. But such slower growth is accompanied by other 
challenges, such as potential losses in stability and requirement of reduced 
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time steps in time-dependent problems, as well as difficulties concerning 
enforcement of boundary conditions, and, especially for large three-
dimensional problems, computational cost. Still, high order finite-difference 
and finite-element methods can be successfully implemented, and they 
remain powerful, widely used numerical techniques for the types of problems 
under consideration. 

 
 

2. Novel Numerical Methods 
 
Various alternatives to FEM and FD discretization approaches, which 

avoid some of the drawbacks mentioned above, are discussed in what follows. 
These methods rely on use of representations of solutions in terms of explicit 
functions over large regions in the physical simulation domain. In the context 
of electromagnetic scattering problems, for example, we mention methods 
which represent the electromagnetic fields in terms of the electrical currents 
that exist at the interfaces between materials: as discussed in Section 4, field 
values can be produced from the surface currents, as linear combinations of a 
number of explicit functions, each one of which provides a contribution to the 
physical field over the complete simulation domain. (Or, equivalently, but 
using a different terminology: field values can be evaluated everywhere in 
space by means of surface integrals with integrands given by products of 
electrical currents and Green functions.) For problems in fluid-dynamics, in 
turn, spectral representations based on Fourier series or Chebyshev 
expansions might be used where, once again, linear combinations of explicit 
functions are used to represent solutions either through the complete 
simulation domain, or at least over large regions thereof. Although they 
effectively resolve the difficulties associated with the dispersion errors 
mentioned in the previous section, these methods themselves present certain 
practical challenges, as described briefly in what follows, and with more detail 
in Sections 3 and 4.  

 
Methods based on use of Green functions for Maxwell’s equations, for 

example, rely heavily on evaluation of certain “surface reflections”—thus 
accounting for the way into which every elementary element of surface 
reflects light upon every other element of surface. For a total of, say ܰ 
relevant surface elements, a total of ܰଶ interactions need to be accounted 
for—which leads to a computational cost that is generally unacceptably high, 
except for sufficiently small and simple simulation contexts. Additionally, 
these methods depend upon accurate representation of interface boundaries 
as well as evaluation of challenging operators involving Green functions—
which require numerical calculation of large numbers of integrals over the 
interface surfaces, each one of which contains an unbounded integrand. 

 
Some of these difficulties also arise in the context of spectral methods: 

here a total of ܰ functions must be evaluated and combined at a number of 
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the order of ܰ points, at a cost that, once again, could generally unacceptably 
high: of the order of ܰଶ operations. Spectral methods present a number of 
additional challenges—since, e.g., Fourier series and Chebyshev expansions 
are natively designed to be applicable in separable domains such as Cartesian 
boxes or spherical shells or deformation thereof via suitable mappings, and 
since the first ones require a stringent assumption of periodicity, while the 
second ones give rise to extremely fine discretizations near boundaries, and 
thus, for problems with general time dependence, require use of extremely 
small time-steps for numerical stability. 

 
Novel trends in the field of numerical analysis and computational 

science have sought to negotiate these challenges with the goal of reaping the 
benefits of explicit-function numerical representations in terms of Green 
functions, Fourier, and Chebyshev expansions, etc., but with applicability to 
realistic, spatio-temporally challenging, scientific, and engineering 
configurations. In the following two sections we discuss recent progress in this 
regard, drawing in part from recent work by the author and collaborators on 
Green-function and spectral methods, and with reference to other related 
methods and techniques. 

 
 

3. Spectral Methods in General Domains and the FC method 
 
In the context of spectral methods, the Fast Fourier Transform (FFT) 

provides a central guiding light, albeit not the complete answer to all the 
ailments arising from the use of spectral methods. By exploiting a certain 
algebra-manipulation trickery applicable to certain set of spectral methods, 
including Fourier- and Chebyshev-based methods, the FFT lends a capability 
of evaluating the combined effect of all ܰ functions at all ܰ discretization 
points at a cost of the order of merely ܰ logܰ operations—significantly 
smaller than the cost, of the order of ܰଶ operations, required for evaluation of 
each one of the ܰ functions at each one of the ܰ points. The acceleration 
provided by the FFT algorithm makes it feasible to apply the highly accurate 
and dispersionless spectral methods to important large scale scientific and 
engineering configurations.  

 
Simulations based on classical Fourier spectral methods are restricted 

to periodic problems on a rectangular domains, since, for non-periodic 
functions, Fourier series incur the Gibbs phenomenon—a crippling 
approximation error that manifests itself in the form of wild oscillations in 
tight intervals around the discontinuity points. Chebyshev-based methods 
are more geometrically friendly. They do not require the stringent periodicity 
conditions inherent in Fourier spectral methods and, as a result, they can be 
applied over multiple subdomains, each mapped to a square, leading to 
possible applicability to relatively complex geometrical structures. The 
Chebyshev methods are extraordinarily accurate, and they can deliver 
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excellent engineering accuracies on the basis of very sparse meshes. They 
derive these qualities from certain graded spatial meshes which cluster 
discretization points near the boundaries of the (cubic or square) simulation 
domains. Chebyshev methods can therefore be used as excellent 
approximation elements for problems independent of time, at a cost 
comparable to that required by FEM or FDM approaches. The situation is 
more challenging for time domain problems—which, in view of the fine spatial 
spacing between certain discretization points, leads to a requirement of an 
extremely fine time discretization mesh, for stability, on account of the CFL 
stability constraint (Courant-Friedrichs-Lewy) or, as an alternative, use of 
(expensive) implicit time-stepping algorithms. 

 

 
Fig. 2. Solution of the compressible Navier-Stokes’s equations corresponding to a flow of gas 

into a that results from an influx of eleven gas jets (impinging at slightly vertically asymmetric 
angles). Simulation produced by the Fourier-Continuation methods presented in work by the author 

with N. Albin. A total of 100 ൌ 10 ൈ 10 FC expansions where used. The spatial dependence of the 
density is displayed at four different points in time. 

 
The Fourier Continuation method (FC) is a spectral alternative to the 

Fourier and Chebyshev approaches which addresses difficulties encountered 
in these and other spectral methods. As other approaches, the FC method 
approximates a given function ݕ ൌ ݂ሺݔሻ defined on an interval I of the real 
line by a Fourier series expansion of a required order, but it does so by (a) 
relying only on an equi-spaced grid, and (b) in manner that is specifically 
designed to avoid the approximation error associated with the 
aforementioned Gibbs phenomenon. (Note that the Gibbs phenomenon 
occurs, even if ݂ is smooth throughout the interval I, unless ݂ is “smoothly-
periodic in I” in the sense that the periodic extension of ݂ is a continuous and 
smooth function of ݔ, up to and including the endpoints of I.) In order to 
eliminate the Gibbs phenomenon, the basic FC algorithm, called FC(Gram) 
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method (in view of its reliance on Gram polynomials for certain near-
boundary operations), constructs an accurate Fourier approximation of ݂, but 
where the Fourier expansion is periodic in an interval J which strictly 
contains I: J ⊃ I. 

 
To do this, the FC algorithm first uses available function values at a few 

(e.g., five) discretization points near each endpoint of the interval I to produce 
discrete function values on the interval J but outside I so that, in all, a 
discrete sampling of a smoothly periodic function ݂௖ defined on the interval J 
is obtained which coincides with ݂ in the interval I. The discrete continuation 
function values are obtained by means of certain linear algebra procedure 
based on evaluation of QR factorization of matrices in high-precision 
computer accuracy. (The high precision QR factorization used, which 
eliminates the ill conditioning inherent in the continuation procedure, is a 
“universal” precomputation—whose results can be stored in a small file in 
computer disc and uploaded at the beginning of every application of the FC 
algorithm.) Once the "periodic" vector of function values has been obtained 
the coefficients of the FC expansion can be efficiently produced by means of 
the FFT algorithm applied in the interval J. In particular, the Fourier 
expansion of the function ݂௖ and its derivatives closely approximate the 
original function ݂ and its derivatives throughout the original interval I, up 
to and including its endpoints. The extension of this technique to higher 
dimensions is straightforward, by producing one-dimensional FC-based 
derivatives one dimension at a time, including arbitrary mixed derivatives of 
any given order.  

 
The FC method has been applied to a variety of problems in two- and 

three-dimensional space, including problems in hydro- and gas-dynamics, 
seismology, acoustics, heat conduction, linear transport theory (e.g. neutron 
transport, radiative transfer), elasticity, turbulence, etc. In most cases, the 
applications make use of multiple overlapping (generally curvilinear 
subdomains) in conjunction with applications of the FC method in curvilinear 
coordinate systems to match a given structure. One of the most significant 
advantages of the FC method is its reliance on equi-spaced meshes, which 
lend a number of benefits, including, as suggested above, manageable CFL 
constraints on time-steps for time-dependent problems, and simplicity in the 
domain decomposition and meshing, in addition to spectral-like character 
leading to low dispersion and diffusion.  

 
A range of applications of FC methods in various areas of science, 

including computation of seismograms, flow past obstacles, radiative 
transfer, magneto-hydrodynamics, turbulence, complex shock dynamics, etc., 
have recently been demonstrated. Here we present a simple application, 
illustrated in Fig. 2, which concerns the solution of the compressible Navier-
Stokes’s equations corresponding to a flow of gas into a chamber resulting 
from an influx of eleven gas jets. The four subfigures in Fig. 2 depict the 
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values of the mass density at four different points of time. The jets were 
arranged in a close-to-symmetric but non-symmetric fashion along the ݕ axis 
around ݕ ൌ 0. The results depicted were produced by means the FC-based 
algorithms introduced by the author in collaboration with N. Albin, by means 
of an array of 100	 ൌ 	10 ൈ 10 equisized squares spanning the computational 
domain. The solution on each one of these squares was produced via Fourier 
continuation, so that one-hundred different FC expansions are combined in 
the density values depicted in the figure. In particular it is easy to appreciate 
that, in view of their accuracy, the decomposition into one-hundred different 
subdomains does not give rise to visible numerical artifacts at the boundaries 
between different square subdomains. The aforementioned contributions 
demonstrate, in each particular instance, the accuracy and efficiency 
resulting from the algorithms. As demonstrated in these references, in many 
cases the approach leads to significant efficiency and accuracy gains over the 
performance provided by other existing algorithms. 

 
 

4. Green-Function Methods 
 
We now turn to problems whose solutions can be expressed in terms of 

certain “Green functions”, also called “Fundamental Solutions”, for a given 
differential equation at hand. A Green function ܩሺݔ,  ሻ for a differentialݕ
equation in the variable ݔ is a special solution of the equation for each ݕ, 
which results as sources concentrated at the single point ݔ	 ൌ  are ݕ	
prescribed. The importance of Green functions is that, for linear differential 
equations, a solution of the equation can be obtained for an arbitrary source 
function ݂ሺݔሻ	as a linear combination of ܩሺݔ,  ሻ (or, more precisely, as anݕ
integral of the product ܩሺݔ,  (ሻݕሻ with a “integral density” function φሺݕሻφሺݕ
over a range of values of the variable ݕ.  

 
Fig. 3. Solution of problem of scattering produced by means of a commercial implementation of Green 

function methods introduced by the author and collaborators J. Guzman, V. Kononov and L. Voss. 
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As indicated above, Green functions can only be utilized for linear 
problems such as, e.g., the wave propagation problem considered in Section 
1; on account of nonlinearity, Green functions are not applicable to problems 
such as those considered in Section 3. But even for linear equations there are 
significant restrictions in the use of Green functions as part of efficient 
computational methods, mainly on account of the high cost required for Green 
function evaluation—except in the small number of cases for which the Green 
functions can be computed in closed form. 

 
(Under various conditions often met in practice, Green functions for 

linear equations can be expressed in terms of Fourier transforms. This is 
indeed so for differential equations with constant coefficients, as established 
by the celebrated Malgrange–Ehrenpreis theorem. Further, Green functions 
for equations with certain types of variable coefficients—which only take a 
finite number of constant values, each one on a simple region such as a half-
space or an otherwise separable domain—can in some cases be obtained by 
means of Fourier transformation and “Sommerfeld Integrals”. Unfortunately, 
explicit numerical calculations of necessary Green function values by such 
methods often require a prohibitive computational cost when applied to 
numerical solution of differential equations.) 

 
In spite of these challenges, Green function-based approaches have had 

very significant impact in many areas of science and technology. This is due 
mainly to the fortuitous fact that closed-form Green-function expressions do 
indeed exist for some of the most important problems in present-day 
application areas. Thus, Green function methods find direct applicability in 
electromagnetism, elasticity, heat transfer and acoustics, and they play 
central supporting roles in the numerical solution of certain nonlinear 
problems—most famously in hydrodynamics, where Green function methods 
for the solution of the Poisson equation are often used in an algorithmic step 
that enforces the incompressibility condition in the nonlinear Navier-Stokes 
equations. Naturally, these Green function methods can be used as 
components of numerical solvers for multi-physics problems, such as, e.g., the 
problem of magneto-hydrodynamics—that governs the mutual interactions 
between gas-dynamics and electromagnetism time evolution of stars as well 
as the design of nuclear fusion reactors. 

 
It is useful to visualize the character of Green function methods in the 

context of propagation and scattering of light; analogous descriptions apply 
in other application contexts. In the light scattering context, the Green 
function ܩሺݔ,  ሻ is expressed in closed form in terms of certain derivatives ofݕ
the expression ଵ

ସ஠
e௞|୶ି୷|/|x െ y|, where ݇ ൌ 2π/λ denotes the spatial frequency 

or “wavenumber” corresponding to the wavelength λ. The Green function 
admits a compelling physical interpretation: the quantity ܩሺݔ,  ሻ correspondsݕ
to the light that would be observed at point ݔ arising from a source of unit 
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“intensity” located at the single point ݕ. Clearly, such a source, as a small 
(infinitesimal) bulb in the otherwise featureless three-dimensional space, 
generates a spherical illumination wave that expands at the speed of light 
and which, as time tends to infinity, covers all space. This final time state, as 
ݐ → ∞, of the point-source illuminated space, is precisely the Green function 
,ݔሺܩ  .ሻݕ

 
Then, according to Fresnel spectacular interpretation, which, in 

particular, allowed him to postulate the wave-like structure of light, every 
point on an illuminated surface reflects a point source φ(ݕ)ܩሺݔ,  ሻ as describedݕ
in the previous paragraph. According to Fresnel, the combination (sum) of all 
of these point sources is precisely what we experience as the light that is 
scattered (reflected) by the surface. Putting aside certain subtleties 
concerning the vector character of light which were ignored in the early 
theory, Fresnel interpretation is in accord with the predictions of the 
subsequent Maxwell’s theory of electromagnetism. 

 
The numerical methods based on Green functions harness Fresnel’s 

ideas, as well as their extensions to other types of problems for which similar 
Green functions can be obtained in closed form, or for which Green functions 
can otherwise be computed numerically with adequate computational 
efficiency. In the Green function method outlined above, a numerical 
approximation of the unknown function φ(ݕ) is sought. Once this function is 
determined, the field at any point in space can be obtained by summation, or, 
more precisely, integration, with respect to ݕ over the given scattering 
surface. 

 
Fig. 4. Left: curved quadrilateralization CAD-file processing resulting from a commercial 

implementation of methods introduced by J. Guzman and the author and mentioned in Section 4. 
Right: Surface density (an electromagnetic version of the density φ mentioned in the text, which 
actually corresponds to the electrical current), and the resulting spatial electric field, obtained by 

integration. 

 
The unknown function φ can be discretized in a number of ways, 

including finite-element approximations on the scattering surfaces, which 
gives rise to one of the preferred approaches in many areas of engineering, 
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namely, the Boundary Element Method (BEM), called Method of Moments in 
the electrical engineering literature. Other approaches for the discretization 
of the function φ are based on point sampling. In either case, for any 
assignment of values of the discretized density φ, whether or not these 
discrete values collectively satisfy the physical surface scattering conditions, 
a value of the integral can be obtained. Using the surface scattering 
conditions this representation results in a matrix equation for the discretized 
density φ, whose solution yields this quantity and thus, by integration, as 
suggested above, the field at any point in space. 

 
As already noted, the Green-function methods considered in this section 

are based on discretization of the scattering boundaries. These methods thus 
require significantly smaller discretizations than would be needed to mesh a 
sufficiently large 3D domain around the scattering structure for use in 
conjunction with a volumetric finite-element or finite-difference 
discretization. Compounding challenges, such volumetric approaches require 
use of a sufficiently large buffer region to enable absorption of outgoing 
waves, by means of some sort of absorbing boundary condition algorithm such 
as the Perfectly Matched Layer method. As a counterpart, volumetric finite-
element, and finite-difference discretizations result in very sparse matrices, 
which can be applied and inverted much more efficiently than do full matrices 
such as those resulting from Green function-based discretizations. The 
natural question concerning the potential relative benefits of volumetric- vis-
à-vis surface-discretization approaches requires a nuanced answer and is 
considered in what follows. 

 
Fig. 5. 10 ൈ 10 ൈ 5 nanopost array designed to focus two different wavelengths and two different 
polarizations of light at four different points in space. TiO2 nanoposts in SiO2 matrix. Array size: 

2,439 cubic μm. Design and simulation by A. Fernandez Lado, E. Garza, E. Jimenez, and the author, 
produced on the basis of accelerated Green function methods. 
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Useful preliminary indications in this regard can be obtained by 
considering the asymptotic growth of the computational cost as the size of the 
problem grows without bound. In detail, for problems of a size given by a 
certain number of wavelengths, a volumetric method in three-dimensional 
space requires use a number of the order of ௏ܰ ൌ ݊ଷ unknowns, where ݊ 
denotes the number of discretization points used per spatial dimension of a 
notional discretized cube. For a problem of such a size, a Green function-based 
surface discretization method requires use of a number ீܰ of the order of ݊ଶ 
unknowns (in asymptotic-order notation, ீܰ ൌ ࣩሺ݊ଶሻ). A straightforward 
solution via Gaussian elimination for an ܰ ൈ ܰ matrix requires a ࣩሺܰଷሻ 
operations for general matrices, but the cost is lower for sparse finite-
difference matrices, of the order of ࣩሺ଼ܰ/ଷሻ, so that, for direct solution the 
corresponding costs would be ࣩሺ݊଺ሻ operations for the Green function method 
vs.	ࣩሺ଼݊ሻ operations for the volumetric approach. But there are multiple 
caveats to these simple-minded estimates, involving mainly fast alternatives 
to Gaussian elimination for the solution of the linear system under 
consideration.  

  
On one hand, for sparse matrices such as those arising from finite-

difference and finite-element methods, the frontal and multi-frontal matrix 
solvers introduced over the last several decades can obtain solutions in as few 
as ࣩሺܰଶሻ operations, which significantly reduces the finite-difference cost to 
ࣩሺ ௏ܰ

ଶሻ ൌ ࣩሺ݊଺ሻ operations: comparable to the direct Gaussian elimination cost 
for the Green function-based solver. Unfortunately, the multifrontal methods 
do not produce any gains when applied to dense matrices, such as those 
arising from use of the Green-function approach.  

 
Fig. 6. Metamaterial “lens” consisting of 20,000 micron-sized nanomposts (a much larger variant of 
the nanopost array presented in Fig. 5). TiO2 nanoposts in SiO2 matrix. Array size: 2,439 cubic μm. 

Simulation by C. Bauinger, E. Jimenez, and the author. 
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Numerous additional significant advantages of all of these methods 
could be mentioned. In the context of time-domain finite-difference solvers we 
emphasize these solvers’ ability to produce, by post-processing via Fourier 
transformation in the time variable, frequency-domain solutions for multiple 
frequencies as a result of a single time-domain solve, as well as their ability 
to effectively treat inhomogeneous media. The Green function-based solvers, 
on the other hand, when implemented with sufficient accuracy for integration 
of the infinite Green function and infinite currents at edges, and when 
adequately “accelerated”, excel in their accuracy and applicability to large 
and geometrically complex problems—possibly involving three-dimensional 
scatterers hundreds or even thousands of wavelengths in electrical size and 
beyond. 

 
Figs. 3 and 4 illustrate applications of a commercial implementation of 

Green function-based solvers proposed by the present author and his 
collaborators in recent years. In particular, the left panel in Fig. 4 
demonstrates the software-based processing of the CAD file (Computer Aided 
Design) representing an engineering surface (an aircraft in this case) that 
yields a representation of the surface by a finite number of “logical 
quadrilaterals”, that is, portions of the surface bounded by four smooth 
curves, which are given by an explicit parametrization from the unit square. 
This decomposition is then used by these algorithms to exploit Chebyshev 
expansions (which were briefly described in Section 3) as well as novel 
methods for accurate integration of functions that are infinite at certain 
points. Acceleration provides the final element that enables solution of 
challenging problems. The available acceleration methods, which include the 
Fast Multipole Method, the Adaptive Integral Method, and other related 
approaches, generally rely on Fast Fourier Transforms, and thus reduce the 
solution to computational costs of the order of ீܰ ሺ݃݋݈ ீܰሻ ൌ ݊ଶ  ሺ݊ଶሻ݃݋݈
operations—significantly less than those required by other approaches. A 
novel acceleration introduced recently by C. Bauinger and the author does 
not rely on use of FFTs, and it thus appears well poised for use in the context 
of parallel and GPU computing in large computational infrastructures. 
Various implementations of Green function algorithms and acceleration 
methods introduced by the author and collaborators are demonstrated in 
Figs. 3 through 6. 

 
 

5. Conclusions 
 

As suggested in Section 2, the spectral and Green-function methods 
considered in these notes derive a distinctive character from use of 
representation of solutions in terms of explicit functions over large regions in 
the physical simulation domain. As a result of such representations, these 
methods avoid the additive accumulation of errors incurred by the local 
discretizations of derivatives utilized in other approaches. When used in 
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conjunction with appropriate acceleration methods and algorithms for 
processing of geometric structures given by CAD representations, these 
approaches can be applied to (and deliver accurate solutions for) problems 
which were previously not considered tractable with any reasonable accuracy. 
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