TESSELLATIONS ASSOCIATED WITH NUMBER SYSTEMS

Agnes I. Benedek and Rafael Panzone

INMABB (UNS - CONICET)

Resumen

En este trabajo probamos que son iguales la dimensión Hausdorff y la dimensión B ('box-counting', capacidad, entropía) del contorno E de una tesela del plano proveniente de un sistema numérico. Esta dimensión s es mayor o igual a uno y menor que dos. La medida de Hausdorff de E es positiva en su dimensión.

Palabras clave: Sistema numérico, Teselado.

Abstract

We prove that the Hausdorff dimension and box-counting dimension of the boundary E of a tile corresponding to a number system are equal, less than 2 and not less than 1. The Hausdorff measure of E is positive in its dimension.

Key words: Number systems, Tessellation.

1. An auxiliary result on the Hausdorff dimension. The next Theorem 1 can be proved repeating almost *verbatim* the proof given in Theorem 3.1 of Falconer's book [3] only replacing the functions g_i^{-1} that appear there by new functions f_i . For the sake of completeness we prove Theorem 1 in §3.

Theorem 1. Let E be a non trivial compact set and a and r_0 two positive numbers, $r_0 < 1$, such that for any set $U \subset E$, $0 < |U| := diam (U) < r_0$, there exist $V = V(U) \subset I$

Trabajo presentado con motivo de la entrega del premio "Orlando Villamayor" en Matemática, a la Dra. Agnes I. Benedek, el 10 de noviembre de 2000. E and a map f from V onto U that verifies

$$v, w \in V \Longrightarrow |f(v) - f(w)| \le \frac{|U|}{\alpha} |v - w|.$$
 (1)

Then, the box dimension $\dim_B(E)$ exists and if $s = \dim_H(E)$ then i) and ii) hold:

i) $H^s(E) \geq a^s$

ii) $s = \dim_B (E)$.

2. A basic result on the boundary of a number tile. In this section we assume the next hypothesis:

H) Let $b \in C (\equiv R^N, N=2)$, |b| > 1, be the base of the number system $\{b, D\}$ with $D = \{0, \alpha_1, ..., \alpha_n\} \subset R^N$ its set of ciphers (digits) such that there exists a point lattice L=[1, g] $\{m+ng: m, n \in \mathbb{Z}\} \subset R^N$ veri-

fying $bL \cup D \subset L$ with D a complete set of residues modulo b, (i.e., each point y of L can be written in a unique way as y = bx + c, $x \in L$, $c \in D$).

Definitions. $F: = \{z: z = 0. \ c_1c_2...; c_1 \in D\}$ and $F_t: = t + F$.

H') $\{F_t: t \in L\}$ is a tessellation of R^N , (i.e., $R^N = \bigcup F_v \ \mathrm{m}(F_u \cap F_v) = 0 \ \mathrm{for} \ u \neq v$).

Theorem 2. If **H**) and **H'**) hold then a) the box dimension of $E:=\partial F$ exists,

b) $s = \dim_{H} E = \dim_{n} E$,

c) $H^{s}(E) > 0$.

d) $1 \le s < N$.

Proof. a), b) and c) will follow from Theorem 1. In fact, suppose $U \subset E$ has diameter $|U| < r_0 := \rho/|b|$ where $2\rho := \min\{|\lambda|; \ 0 \neq \lambda \in L\}$. Let k be the positive integer verifying $\rho/|b| \leq |U| |b|^k < \rho$.

We write $U = \bigcup_{j=1}^{M} U_{j}$, where each U_{j}

is of the form $U \cap (F_{0.b_1...b_k} \cap F_{\gamma.c_1...c_k})$, $\gamma \in S^0$: $= \{t \in L : t \neq 0, \ F \cap F_t \neq \varnothing\} \ \text{and} \ b_i, \ c_i \in D \ \text{depend on } j. \ \text{Let} \ g_j(z) := b^hz + t_j \ \text{where each}$

 $t_j = -\sum_{i=1}^k b_i b^{k-i}$ is a point of the lattice L (this because of $bL \cup D \subset L$). Each similitude g_j maps U_j into E and $|g_j(z) - g_k(z)|$ is either identically 0 or $\geq 2\rho$. Therefore, if the maps are not identical then

$$dist(g_j(U), g_h(U)) \ge 2\rho - |U| \cdot |b|^k > \rho.$$
 (2)

Let $V = \bigcup_{j=1}^{M} V_{j}$ where $V_{j} := g_{j}(U_{j})$ and define $f: V \to U$ by $f(z) = g_{j}^{-1}(z)$ if $z \in V_{j}$. Observe that if $V_{j} \cap V_{k} \neq \emptyset$ then, by (2), g_{j} and g_{k} must be identical. Therefore, f is well defined and onto U. We claim that if $z, w \in V$ then

$$|f(z)-f(w)| \le \frac{|U|}{a}|z-w|$$
, where $a = \rho/|b|$. (3)

This will show that the hypothesis of theorem 1 are fullfilled, so a), b) and c) are true.

Let $z \in V_j$, $w \in V_h$. There are two possibilities:

i) g_i and g_h are identical. Then,

$$|f(z)-f(w)| = |z-w||b|^{-k} \le \frac{|U|}{\rho/|b|}|z-w|.$$

ii) g_j and g_h are not identical. Then, using (2), one gets $|z-w| \ge dist \ \{V_j, \ V_h\} > \rho$

and
$$|f(z)-f(w)| \le |U| = \frac{\rho}{\rho}|U| < \frac{|U|}{\rho}|z-w|$$
.

Thus, in any case (3) is true with $a = \rho/|b|$.

Let us prove d). s < N is a consequence of c) and the definition of tesselation. On the other hand, F is a compact set with non void interior and E is compact. Any compact set with Hausdorff dimension less than 1 is totally disconnected. If s < 1 then the complement E' of E in R^N , N>1, is a connected set. A polygonal path in E' from one point in $\operatorname{int}(F)$ to a point in $\operatorname{ext}(F)$ contains necessarily a point in F with two representations. That is, a point in E, a contradiction, QED.

3. Proof of the auxiliary theorem. To prove Th. 1 we shall deduce that

$$\forall d > 0 \quad H^d(E) < a^d \Rightarrow \overline{\dim}_B(E) < d.$$
 (4)

Then i) of Theorem 1 is true if s = 0 because of $H^0(E) \ge 1$ and if s > 0, it is a consequence of (4) since if d = s one obtains the contradiction $\overline{\dim}_B(E) < s$. Besides, for p > 0 and d = s + p we have $0 = H^d(E) < a^d$ and from (4) we obtain $\overline{\dim}_B(E) < d$ and ii) follows, qed.

 $H^d(E) < a^d$ implies the existence of a finite family of open sets $\{U_i: i=1,...,\ m\}$ such that

$$\forall i |U_i| < \inf\{a/2, r_0\} \text{ and } E \subset \bigcup_{i=1}^m U_i, \sum_{i=1}^m |U_i|^d < a^d.$$

Then, there exists t, 0 < t < d, verifying $\sum \left|U_i\right|^t < a^t$. Let $q:=\sum \left(\left|U_i\right|/a\right)^t < 1$.

We obtain from the hypothesis that $\exists V_i := V(U_i) \exists f_i : V_i \xrightarrow{onto} U_i \text{ in such a}$ way that

$$\forall v, w \in V_i \quad |f_i(v) - f_i(w)| \le |U_i| |v - w|/a.$$

Let $I_k:=\{1,...,\ m\}^k,\ I=\cup I_k$ and define $U_{i_l...i_k}=f_{i_l}\circ...\circ f_{i_k}\ (V_{i_k})\subset U_{i_l}$. Then, with some abuse of notation we get,

$$\begin{split} E \subset & \cup f_i(V_i) \approx \cup f_i(E) \subset \cup \{f_{i_1} \circ ... \circ f_{i_k}(E) : \\ \{i_1, ..., i_k\} \in I_k\} = & \cup U_{i_1...i_k}. \end{split}$$

Let $x = f_{i_1} \circ ... \circ f_{i_k}(u), y = f_{i_1} \circ ... \circ f_{i_k}(v),$ $x, y \in U_{i_l \cdots i_k}$. Thus, $u, v \in V_{i_k}$ and it holds for $r \to 0$, $\overline{\lim} \frac{\log N(r)}{\log 1/r} \le t$. In consequence,

$$|x-y| \leq \frac{|U_{i_1}|}{a} |f_{i_2} \circ \dots \circ f_{i_k}(u) - f_{i_2} \circ \dots \circ f_{i_k}(v)| \leq \frac{\prod |U_{i_j}|}{a^k} |u-v|.$$

In consequence,

$$\left|U_{i_1...i_k}\right| \leq \frac{\prod \left|U_{i_j}\right|}{a^k} |E|.$$

Let $\beta := \inf |U_i|/a$, $0 < r < \inf \{|E|, 1\}$. Given $x \in E \exists k \exists U_{i_1 \cdots i_k}$ such that

$$x \in U_{i_1 \dots i_k} \ , r\beta \leq \left(\prod \left| U_{i_j} \right| \right) |E| \ / \ a^k < r.$$

In fact, $r\beta < r/2 < r < |E|$; beginning with U_{ν} , $\gamma \in I_{\nu}$ we arrive to a first k

$$such \ that \ \frac{\left|U_{i_{k}}\right| \prod\limits_{n=1}^{k-1} \!\! \left|U_{i_{n}}\right|}{a^{\frac{k-1}{n-1}}} |E| < r, \quad r \leq \frac{\prod\limits_{n=1}^{k-1} \!\! \left|U_{i_{n}}\right|}{a^{\frac{k-1}{n-1}}} |E|.$$

From the definition of β we get now

$$r\beta \leq \frac{\prod_{i=1}^{k} \left| U_{i_n} \right|}{\alpha^k} \left| E \right| < r.$$

Let N(r) ($< \infty$) be the minimum number of sets of (positive) diameter less than r that cover E. It holds that

$$N(r) \leq card \left\{ \bigcup_{k} \left\{ \gamma \in I_{k} : r\beta \leq a^{-k} \left| U_{\gamma_{1}} \right| \dots \left| U_{\gamma_{k}} \right| \left| E \right| \right\} \right\} \leq card \left\{ \bigcup_{k} \left\{ \gamma \in I_{k} : r\beta \leq a^{-k} \left| U_{\gamma_{1}} \right| \dots \left| U_{\gamma_{k}} \right| \left| E \right| \right\} \right\} \leq card \left\{ \bigcup_{k} \left\{ \gamma \in I_{k} : r\beta \leq a^{-k} \left| U_{\gamma_{1}} \right| \dots \left| U_{\gamma_{k}} \right| \left| E \right| \right\} \right\} \leq card \left\{ \bigcup_{k} \left\{ \gamma \in I_{k} : r\beta \leq a^{-k} \left| U_{\gamma_{1}} \right| \dots \left| U_{\gamma_{k}} \right| \left| E \right| \right\} \right\} \leq card \left\{ \bigcup_{k} \left\{ \gamma \in I_{k} : r\beta \leq a^{-k} \left| U_{\gamma_{1}} \right| \dots \left| U_{\gamma_{k}} \right| \left| E \right| \right\} \right\} \leq card \left\{ \bigcup_{k} \left\{ \gamma \in I_{k} : r\beta \leq a^{-k} \left| U_{\gamma_{1}} \right| \dots \left| U_{\gamma_{k}} \right| \left| E \right| \right\} \right\}$$

$$\sum_{A \in I} (|E|/r\beta)^t \prod (|U_{\gamma_j}|/a)^t \le$$

$$\sum \left\{ \sum\limits_{I_k} \left(\!\!\left|E\right|\!/r\beta\right)^t \prod\limits_{1}^k \!\!\left(\left|U_{\gamma_j}\right|\!\!\left/a\right)^t : k=1,2,\ldots\right\} \le$$

$$\left(\frac{|E|}{r\beta}\right)^{t}\sum_{k=1}^{\infty}\left(\sum_{1}^{m}\left(\frac{|U_{n}|}{a}\right)^{t}\right)^{k}\leq \frac{1}{r^{t}}\left(\frac{|E|}{\beta}\right)^{t}\sum q^{k}=$$

= Mr^{-t} . Since M is independent of r we have,

for
$$r \to 0$$
, $\overline{\lim} \frac{\log N(r)}{\log 1/r} \le t$. In consequence,

$$\overline{\dim}_B(E) < d$$
, QED.

4. Remarks. a) The general context in which these results fit can be seen in [1] b) In [5] Th. 4 we make more precise the statement a) of Th. 2. There we prove,

among other results, that
$$\dim_B E = \frac{\log \lambda}{\log |b|}$$

where $\lambda \ (\geq |b|)$ because $s \geq 1$) is the spectral radius of a nonnegative matrix Q and an eigenvalue of maximum modulus of it. Q is in a natural way associated with the system (b, D). With relation to this result the reader may consult [2] and [4].

References

- [1] Benedek A., Sobre la representación posicional de números, I.T.I. # 18, Instituto de Matemática, UNS-CONICET, (2000) 29-38.
- [2] Duvall P., Keesling J. and Vince A., The Hausdorff dimension of the boundary of a self-similar tile, preprint.
- [3] Falconer K., Techniques in fractal geometry, J. Wyley and Sons, (1997).
- [4] Veerman J.J.P., Hausdorff dimension of boundaries of self-affine tiles in \mathbb{R}^N , Boletín de la Soc. Mat. Mexicana (3)Vol. 4 (1998) 159-182.
- [5] Benedek A. and Panzone R., On tilings associated with number systems and the geometry of sets derived from the bases -n+i, to appear.

Manuscrito recibido y aceptado en febrero de