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Abstract

We survey some recent applications of the infinite-valued Eukasiewicz cal-
culus in computer science, with particular reference to fault-tolerant search and learn-
ing. We also discuss the relations between the algebras of the infinite-valued
Fukasiewicz calculus, namely, Chang's MV-algebras, and various areas of mathemat-
ies, including lattice-ordered abelian groups, fang and toric varieties, and AF alge-

bras of operators.
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Introduction

The infinite-valued propositional cal-
culus of Lukasiewicz today finds interesting
applications in computer science, notably in
the treatment of uncertain information. Fur-
ther, its associated algebras, Chang's MV-
algebras, have deep relations with various
mathematical objects, such as torie varieties,
ahelian lattice-ordered groups, and the op-
erator algebras of quantum spin systems.

For all unexplained notions and re-
sults we refer to Professor Roberto Cignoli's
comprehensive overview [24] for these
Anales. While in a sense this paper is a con-
tinuation of his, we shall mainly focus at-

Conferencia pronunciaeda en su incorpo-
racion como Académico Correspondiente en
Milan, Italia, el 27 de octubre de 2000,

tention on some recent applications to
error-correcting codes and computational
learning theory.

1. Coding and Learning
1.1 Ulam-Rényi Games

The ability to guess new, non-casual
connections between events is among the
main characteristic features of homo sapi-
ens [8]. To understand the simplest aspects
of this guesswork one may construct a
mathematical model. A notable example is
described by Rényi {90, page 47] as follows;

[...] I made up the following version,
which I called "Bar-kochba with lies". As-
sume that the number of questions which
can be asked to figure out the "something"
being thought of is fixed and the one who
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answers is allowed to lie a certain number
of times. The questioner, of course, doesn't
know which answer is true and which is
not. Moreover the one answering is not re-
quired to lie as many times as is allowed.

For example, when only two things
can be thought of and only one lie is allowed,
then 3 questions are needed [...]. If there are
four things to choose from and one lie is al-
lowed, then five questions are needed. If two
or more lies are allowed, then the calcula-
tion of the minimum number of questions is
quite complicated [...]. It does seem to be a
very profound problem [...].

Ulam [104, page 281] essentially
poses the same problem:

Someocne thinks of a number between
one and one million (which is just less than
2%9). Another person is allowed to ask up to
twenty questions, to each of which the first
person is supposed to answer only yes or no.
Obviously the number can be guessed by
asking first: Is the number in the first hailf
million? then again reduce the reservoir of
numbers in the next question by one-half,
and so on. Finally the number is obtained
in less than log, (1000000). Now suppose one
were allowed to lie once or twice, then how
many questions would one need to get the
right answer?

Both Rényi and Ulam are concerned
with the variant of the familiar game of
Twenty Questions where two players,
Carole and Paul, fix a finite search space,
Carole chooses a secret number, and Paul
must guess it by asking a minimum num-
bher of ves-no questions, with the proviso
that Carole can give up to e wrong/inaccu-
rate/mendacious answers,

For concrete applications it is use-
ful to assume that Carole is not aware of
giving erroneous answers-that is, she is not
lying, but her answers are misunderstood
because the transmission channel is noisy.
In this way, Carole can be equivalently
thought of as an artificial satellite which is
transmitting, at each instant £ =1, 2, 3, ...,
a bit b, carrying the current yes-no answer.
Some bit may be occasionally received as
1 - b, instead of b,, as the result of distor-
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tion. Paul's adaptive question then amounts
to sending back to Carcle a copy of the ac-
tually received bit via a noiseless channel®.

With this formulation, the Ulam-
Rényi game becomes a main chapter of
Berlekamp's theory of communication with
feedback [9] (also see [34]). When the noise-
less feedback channel is unavailable, all
questions must have been asked non-
adaptively at the outset, in a list given in
the input of the computer of the satellite:
then optimal searching strategies exactly
amount to optimal e-error-correcting codes®.

Friendly and unassuming as they
are, Ulam-Rényi games also combine sev-
eral basic ingredients of learning: Paul's
guestions are adaptive, are formulated in
some language, he must learn as quickly as
possible, and his search is fault-tolerant.
The mutual interplay between adaptivity,
fault-tolerance, efficiency and formal ex-
pressive power can be rigorously analyzed
in the context of Ulam-Rényi games. In the
first part of this paper we shall survey a
number of results, and relate Ulam-Rényi
games to computational learning theory
[105], [4], and to the infinite-valued calcu-
lus of Lukasiewicz [29], [57], [102, Section
V],

1.2 Measuring uncertain information

Suppose Carole and Paul are playing
a Ulam-Rényi game with e lies, over a
search gpace S with M elements. Assuming
already ¢ questions have been answered, for
eachi=0,.., e, let A denote the set of those
elements of S falsifying exactly i answers.
We say that (A, A, ..., A) is Paul's state of
knowledge. Let x, = |A,-r denote the num-

! Indeed, Carole and Paul now co-operate against
distortion, and Carole knows Paul's adaptive question-
ing strategy. The only missing piece of information
needed by Carole to determine Paul's question is the
sequence of bits &%, ..., b* actually received by Paul
(b¥e {b, 1 -0

* Among the surveys devoted to Ulam-Rényi games
and their applications, let us quote [22] and [52]. See
[99} for a non-technical introduction, See [59] for error-
correcting codes.
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ber of elements of A,. Then the state o= (4,,
A, ..., A) is said to be of type (x,, x,, ..., x,).
If there is no danger of confusion, we shall
freely identify (A, A, ..., A) with (x,, ..., x,},
and say that the latter, too, is a siate.

Similarly, a question T will be rep-
resented by the (e + 1)-tuple [t ..., £],
where £, = [T nA.|.

uppose Paul asks question 7 =

[z, ..., 1, being in state (x, ..., x,). Suppose
Carole's answer is "yes". Then the resulting
state ¢ = (x,, ..., x]) is given by

Xy =1
x;=t; + (xj_l —tj_l), ey

for j = 1, ..., e. ThHe above formulas express
the fact that, for an element x € S to fal-
sify j answers there are two possibilities:
either x satisfies T and falsifies j of the pre-
viously received answers, or else, x falsifies
T, and also falsifies j — 1 of the previous
answers. One can similarly define the state
o™ arising from Carole's negative answer.

Summing up, given a state o = (x,
-, %) and a question T, Carole's two pos-
sible answers to T determine two states o
and ov. Paul will then ask a next adaptive
guestion and, depending on Carole's an-
swer, he will be left in one of the four pos-
sible states

d:es,yes) Oyes,rw, o-zw,yes) ohone,

By induction, Paul's questions determine a
binary tree 7, rooted at o, as follows: The
edgeés of t are labelled by Carole's answers.
Fach node contains Paul's state of know-
ledge, and in ease this state is not final®, the
node also contains the next question to be
asked. We say that 7is Paul's strafegy. We
say that the state o has a winning strategy
of size t if there exists a binary tree 7 of
height ¢, rooted at o, with labels as above,
whose bottom nodes are final states.
Berlekamp [9] introduced and ana-
lyzed the following basic measure of e-fault-

tolerant information;

$Astate o= (A, A}, .., A) is final if |Uf=0 A‘.i =1,

For each e 2 0 and n = 0, the nth
volume, V (x,, ..., x ), of a state (x, ..., x) is
defined by

€

Vn(xo,xl,--v,xe): > E(nj

=0 . j=0

The character of o = (x, ..., x} is
defined by
ch(x,, ..., x,) = min[n ] Vn(xo, vy B 2R)

A strategy S for a state o is said to be per-
fect if § is of size g = ch(o) and is winning
for o. '

The appropriate generalization of
the notion of "balanced question" for a game
with lies, rests on the following:

Theorem 1.1 [9] Let o= (x, ..., x,)
be a state, e 2 0, T a question, o= and o"*
the two possible states resulting from s af-
ter Carole's answer to T. We then have

(i) For all integers n = 1,

V(o) +V (") =V (o)

n-1

{ii) If o has a winning strategy of
size n then Vn(o) < 2~

{iii) For any integer M 2 1, the quan-
tity

ch(M, 0,0, ..., 0) (e zeros)

is a lower bound for the number of questions
needed to find and unknown element in the
Ulam-Rényi game on e lies over a search
space of cardinality M.

Statement (iii) is a far-reaching gen-
eralization of the trivial fact that an un-
known m-bit number cannot be guessed
with less than m questions in the Twenty
Questions game without lies.

1.3 Learning and Noise

We shall now present a different sce-
nario: The main characters are no longer
Carcle and Paul, but a Turing machine A
and a team 8 = [1, ..., M] of expert meteo-
rologists to supervise M's learning, There are
several rounds, one for each day ¢t = 1, 2, ...
During round ¢ every member i of S offers
her/his weather forecast b, € [0, 1] = [sunny,
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rainy] for the next day. Under the supervi-
sion of the experts in S, /M has the task of
learning the art of giving infallible weather
predictions. To this purpose, on each day ¢,
all bits &, , ..., b, are sent (perhaps in some
conveniently "compiled" form) to the input
of M, the latter is asked to make its own
forecast b,, and at the end of day ¢ + 1, M
is told whether b, or 1 — b, was the correct
forecast.

If all experts of S were incompetent,
they could hardly teach M the art of infal-
lible {sunny, rainy} forecasts. So, for defi-
niteness, let us assume that S contains pre-
cisely one expert x* who is guaranteed to
make < ¢ wrong forecasts during all rounds
t=1, 2, .. Stated otherwise, while all other
experts will make more than e wrong fore-
casts in the long run, this is not the case
of x*: after a preliminary stage when x*
may make up to e mistakes, x* becomes
infallible.

Problem. Under the above condi-
tions, how many wrong forecasts must M
make, before acquiring infallible predicting
capabilitieg?

The following result is proved by
reformulating this preblem in the context
of Ulam-Rényi games:

Theorem 1.2 [20] Let g be the char-
acter of the initial state of knowledge in a
Ulam-Rényi game with e lies over the
search space S = (1, ..., M} Then g wrong
guesses suffice to solve the above problem.

Thus algorithm M acquires infallible
predicting capabilities, by trial, error and
emulation, after making no more than ¢ =
ch(M, 0, 0, ..., 0) wrong forecasts. During
the first stage, .M applies an appropriate
search strategy (mimicking Paul's strategy
in the Ulam-Rényi game with e lies over a
search space with M elements) to identify
the special expert x*. As soon as x* is de-
tected, M is guaranteed to make no more
than e¢' errors, where e'= ¢ — w and w is
the number of wrong predictions made by
x* go far. The current number of Mf's wrong
predictions is € ¢ — e + w. The first stage is
over. Afterwards, M will just emulate x*,
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making a maximum of e' wrong predictions:
once the last mistake is made, also the sec-
ond stage terminates, and M becomes infal-
lible (together with its supervisor x*).

The above example naturally fits in
Littlestone's of mistake bound model of
learning, and is also a particular case of
Valiant's PAC learning, [55], [51], [54], also
see [3], [105]*

1.4 Adaptivity vs Efficiency

The mathematical theory of Ulam-
Rényi games is very rich, and, by the above
discussion, can be applied to investigate the
mutual tradeoffs between various basic con-
stituents of the learning process. In this
section we survey some of the main results.

EReducing the impact of adaptivity

By contrast with what is known in
error-correcting coding theory, perfect
strategies do exist in Ulam-Rényi games
—even if adaptivity is reduced to its (non-
zero) minimum:

Theorem 1.3 Fix e =
then have

(i) For all integers m = 1, up to fi-
nitely many exceptions, there is a perfect
strategy to guess an m-bit number with up
to e lies in the answers,

(ii) Perfect strategies still exist, un-
der the stronger assumption that questions
occur in only two non-adaptive batches.

1, 2, ... We

Proof. Statement (1) was proved for
e =1, 2, 3, and for the general case, respec-
tively in [87], [32], [84], and [100]. It is a
far reaching generalization of the fact that,
in the game of Twenty Questions one can
guess an m-bit integer using m questions.

For a proof of (i1} see [17, 18, 21].

The third statement {(iii) is a
consquence of well known negative results

4 For further information on computational learn-
ing, prediction on line and related topics see, e.g., 5],
i6], [101, (331, (381, 1401, (50], [53], [56], [108], [109].
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in error-correcting coding theory (see {59,
1031), recalling that non-adaptive Ulam-
Rényi games correspond to error-correcting
codes,

Random errors/lies

One can naturally investigate situ-
ations where the number of lies (distortions,
errors) is proportional to the length of the
learning process. Thus one assumes that
there is a real value 0 < r < 1, known fo
both Paul and Carole, such that if Paul asks
n questions then Carole is allowed to tell at
most | r n| many lies. As expected, lies are
no longer so malicious as in standard Ulam-
Rényi games®, As a matter of fact, in their
paper [101] Spencer and Winkler proved the
following®.

Theorem 1.4 For non-adaptive
search over 8 = {0, 1, ..., M — 1} we have

(L If r < 174, then Paul has o win-
ning strategy with &log, M) questions.

(it) If r = 1/4, then Paul has a win-
ning strategy with O(M) questions.

(iit) If r > 1/4, then no winning strat-
egy exists for Paul for any M = 9r/(r — 1/4),
no matter the number of questions.

For fully adaptive search over S = (0,
1, ..., M - 1} we have

(iv) If r < 1/3, then Paul has a win-
ning strategy with O(log, M) questions.

(v) If r 2 1/3, then no winning strat-
egy exists for Paul for all M = 5, no matter
the number of gquestions.

Reducing the power of noise

In the "half-lie" variant of the Ulam-
Rényi game one assumes that only negative
answers can be mendacious. Equivalently
stated, one of the two bits 0 and 1 is always

& See [88] for a further discussion. See [41] for a
first probabilistic analysis of betting in Ulam-Rényi
games.

5 We use the notation ©(g(x)) = {fix) | there exist
constants ¢, ¢, > 0, and n, such that 0 < ¢ g(x) < flx) <
cglx), for all x = x).

immune from distortion, as is the typical
case in optical communication [89, 31].

The following result interestingly
shows that the lower bound of Theorem 1.1
(iii) is ineffective for half-lies. '

Theorem 1.5 [19] Consider the
game with one half-lie, over the search
space of all m-bit numbers.

(i) For no value of m there is a strat-
egy with < ch{2™, 0} — 3 questions.

(iz) For infinitely many values of m,
ch(2=, 0) — 2 questions suffice.

(iit) For infinitely many viaues of m,
ch(2™, 0) — 2 questions do not suffice.

(iv) Foreach m =1, 2, ... there is a
strategy with ¢ = ch(2™ 0) — 1 questions.

Comparison questions

With respect to the perfect strategies
of Theorem 1.3, much larger search spaces
can be handled, and much faster and sim-
pler guessing algorithms can be devised,
once guestions are suitably restricted, e.g.,
to comparison guestions, as in Ulam's origi-
nal formulation. Next come bicomparison
questions, asking,

"Does x belong to one of the two in-
tervals [p, gl or [r, s]?".

For the case e = 2, in [83] one can
find a proof of the following

Theorem 1.6 For all integers m > 1
other than 2, there is a perfect strategy to
guess an m-bit number with up to two lies
in the answers, and bicomparison questions.
The results does not hold for comparison
guestions.

A crucial ingredient of the proof is
that bicomparison questions preserve the
shape of Paul's current state of knowledge
o=(A,A,A) More precisely, the relative
distribution of the A in the totally ordered
search space S can be parameterized by
eleven integers. Paul can quickly reflect on
his state of knowledge resulting from
Carole's answers, and hence, he can quickly™
decide which next bicomparative question
should be asked to detect the secret num-
ber as quickly as possible.
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1.5 The Logic of Ulam-Rényi Games

There is a natural connection be-
tween Ulam-Rényi games, learning and
logic: The success of our guesswork is pro-
portional to our ability to handle informa-
tion flows; information travels in small
packets, which we must efficiently "con-
nect”, in order to produce increasingly com-
plex "hypotheses" and make suitable "de-
ductions”, to obtain new truths from old
truths, Noise is a source of complication in
this logical process. Deduction in classical
logic is not fault-tolerant, but deduction in
learning and in Ulam-Rényi games is.

As noted by von Neumann's [107], in
connection with a related problem,

[...] The theory of automata, of the
digital, all-or-nothing type, [...] is certainly
a chapter in formal logic [... which is ...] one
of the technically most refractory parts of
mathematics [... dealing with ...] rigid, all-
or-nothing concepts, and has very little con-
tact with mathematical analysis [...] the
technically most successful part of math-
ematics [...] The logic of automata will dif-
fer from the present system of formal logic
in two relevant aspects.

1. The actual length [...] of the
chains of operations will have to be consid-
ered. 2. The operations of logic [...] will all
have to be treated by procedures which al-
low [...] malfunetions with low but non-zero
probabilities. All of thig will lead to theo-
ries which are much less rigidly of all-or-
nothing nature than the past and present
formal logic [...]

von Neumann (1948), quoted in [109, p. 2]

One can hardly doubt that Carole's
answers in a Ulam-Rényi game with e lies
are propositions. However, for e > 1, Carole's
answers fail to obey classical log‘xc in sev-
eral respects:

1. Two opposite answers to the same
repeated question in general do not lead
Paul to inconsistency,

2. The conjunction of two equal an-
swers, to the same repeated question, gives
in general more information than a single
answer.

D. Mundici. Many-valued logic: from foundations to applications.

3. Paul's search is not guided by the
trivial principle that each answer is either
true or false. Rather, his balanced strategy
is guided by his state of knowledge 6. When
e = 0, o boils down to partitioning S into 2
classes: those x € 8 which falsify one an-
swer, and those who don't. When ¢ > 0, &
similarly classifies all elements S by means
of e + 2 truth-values. Thus 2-valued logic
is naturally replaced by (e + 2)-valued logic.

In more detail, let us first note that,
up to inessential rearrangements, Paul's
state of knowledge is a function ¢ assign-
ing to each element y in the search space
S one of e + 2 (suitably normalized) #ruth-
values, as follows:

ecly) =1iff y satlsﬂes all answers

e c(y) = 0 iff y falsifies e + 1 answers,
or more
o cly)= L 7 iff ¥ satisfies all an-

swers, with exactly i exceptions =1, ..., ).

In particular, the initicl state of
knowledge is the constant function 1 over S.
Using this representation of states of knowl-
edge, the state change law (1) acquires a
particularly simple form, as follows:

Suppose Paul, being in state ¢, asks
question @ C S and receives from Carole a
positive answer, Let 7: § — {truth-values} be
the state of knowledge arising from this an-
swer only. Thus, as a particular case of the
above definition, for each y € S, 1y} = 1if y
satisfies the answer, and 7y) = e/{e + 1) oth-
erwise. Then Paul's new state of knowledge
¢ will be given by ¢ = ¢ ® 7, where the sym-
bol ® denotes Lukasiewicz conjunction a @
b=max(0,a+b-1)forall g, & € [0, 1].

It follows that

Proposition 1.7 [68] After Carole's
answers to his questions @, ..., @, Pauls's
state of knowledge is the Lukasiewicz con-
Juntion of the t states of knowledge resuli-
ing from Carele's individual answers.

One defines the natural order struec-
ture on the abelian semigroup (S, ®), of all
states of knowledge by writing 7' < 1" (read
t' 18 sharper than 1", or 7" is coarser than
') Hf 7'(y) < v''(y) for all v € 8. For every
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state 7€ (S, @)e there 1s a coarsest state —1
€ (8, ®) which is incompatible with 7, in the
sense that 7® — 7 = 0, with 0 denoting the
zero state. Specifically, —7= 1 — 7, where 1 is
the initial state. Using the operations - and
® we can express the natural order between
states of knowledge, by writing the equation
7 ®—¢ = 0 instead of the inequality 7< ¢

The involutive abelian monoeid (S, ®,
—, 1} of all states of knowledge in Ulam
game over S with ¢ lies is our first example
of an MV-algebra (see below for the defini-
tion)’. :

We say that an equation

Ay s )= Ylx,, s X))

is absolute4ff it is valid whenever the vari-
ables x, are replaced by arbitrary states of
knowledge 7 in any posible MV-algebra of
states (S, @, -, 1), arising {from a Ulam
game with finite search space § and any
arbitrarily fixed number e of lies.

The following result (see [29] for a
proof) generalizes the trivial remark that
the set of valid equations between states of
knowledge in the classical game of Twenty
Questions coincides with the set of valid
equationg for boolean algebras.

Theorem 1.8 Let the terms ¢ and
be obtained from the variables x, ..., x, and
the constant 1 by a finite number of appli-
cations of the operations — and @. Then the
following conditions are equivalent for the
equation § = y

(i) The equation is absolute;

(ii) The bi-implication ¢ < yis a
tautology in the infinite-valued proposi-
tional colculus of Eukasiewicsz,

(iti) The equation follows from the
associativity and commutativity of ®, to-
gether with the equations x © 1=x,x® -1
==l vw=xand ~(—x ®@y) @ y=(—y
© x) @ x (there are the defining equa-

7 MV-algebras, are the algebras of the infinite-val-
ued propesitional caleulus of Lukasiewicz [57]. For

background on Lukasiewicz logic and MV-algebras see
[28]. Other useful references are [47], [49], |86}, [48] as
well as the monograph {28]. See [25] for a compact tech-
nical survey of MV-algebras and their neighbours.

tions of MV-algebras) using substitutions of
equals by equals.

2, Mathematical structures
2.1 MV-algebras

Introduced in the late fifties by
Chang (see [16] for a short historical pre-
sentation), after some years of relative
guiescency, today MV-algebras are thor-
oughly investigated by several research
groups. As we have seen, an MV-algebra is
a sef equipped with an associative-commu-
tative operation @, with a neutral element
1, and with an involutive operation - such
that x ® — 1 = - 1 and, characteristically,

-z ©@ ¥) @y = a(—y @ x) @ x. (2)

One also introduces the derived operations 0
=—land x ® y = = (= x ® —)% These equa-
tions express some properties of the real unit
interval [0, 1] equipped with negation —x =1
— x and the operation x @ ¥y = max(0, x + vy —
1). For instance, direct ingpection shows that
the left hand member of equation (2) coincides
with the minimum of x and v, whenever x, ¥
£ [0, 1], and hence the equation expresses the
commutativity of the min operation.

The first basic theorem on MV-alge-
bras, Chang's completeness theorem, [14],
[15] is as follows

Theorem 2.1 An equation follows
from the above equations for MV-algebras
iff it is valid in [0, 1].

This is a far reaching generalization
of the well known fact that the two element
set {0, 1} equipped with the operations of
involution and max generates the variety of
boolean algebras®,

8 The present definition of MV-algebra is ebviously
equivalent to the usual one, based on the @ operation
and the zero element.

9 The literature contains many distinet proofs, nota-
biy [23], [85] and [98]-the first published proof of the com-

pleteness of the infinite-valued fiukasiewicz calculus.
Nevertheless, each of these proofs requires substantial
background prerequisites from such disparate areas as
first order model theory, linear inequalities, free abelian
lattice-ordered groups, toric varieties, To the best of our
knowledge the first elementary proof is given in {26].
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A second relevant fact is given by
the following result®

Theorem 2.2 [65] There exists a
natural categorical equivalence T between
MV-algebras and abelian lattice-ordered
groups (for short, fgroups) with a distin-
guished strong unit. For any Lgroup G with
strong unit u, the functor T equips the unit
interval 10, ul of G with the operation u — x
and with truncated addiction ua(x + v). For
any morphism y: (G, u) = (H, v) of fgroups
with strong unit, the functor T restricts w
to [0, ul.

Thus, sitting inside every MV-algebra
A there is a unique addition, the addition of
its corresponding group. One can then unam-
biguously say that elements of A sum up to
1, or that they are linearly independent, or
that a certain product-like operation on A
distributes over addition. This is a prelimi-
nary step for representing every MV-algebra
as the limit of its partitions (thus generaliz-
ing a well known property of boolean alge-
bras), and for the approximability of £groups
by means of simplicial groups (free abelian
groups of finite rank, equipped with the prod-
uct ordering given by the natural order of the
additive group of integers). See Theorem 2.6
below and the remark after the final corol-
lary of this paper.

A third major result is McNaugh-
ton's representation theorem:

Theorem 2.3 [58] Up to logical
equivalence, formulas in n variables coin-
cide with the totality of continuous [0, 1]-
valued piecewise linear functions f over [0,
1}, where each piece of f is a linear poly-
nomial with integer coefficients.

This result vastly extends the well
known theorem stating that formulas in
two-valued logic represent all boolean func-
tions. McNaughton's 1951 proof is non-con-
structive. In the 1994 paper [71] one can
find a direct geometric proof, stressing the

10 See {26, 27] for a self-contained proof.
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role of desingularization, an important con-
cept in the theory of toric varieties. The
main ideas of this new proof are sketched
in the next section.

2.2 Normal form and non-singular fans

In many-valued logic, as well as in
boolean logic, disjunctive normal forms
(DNF) play a fundamental role, both for
automated deduction, and for a deeper un-
derstanding of the algebra of formulas [69],
[79], 11]. Tet v = T T x ) be a formula
in the infinite-valued calculus.

Since by Chang's completeness theo-
rem, the variety of MV-algebras is gener-
ated by the unit interval [0, 1], a routine
construction shows that, as an element of
the free n-generated MV-algebra, the equi-
valence class of ¥ can be identified with a
piecewise linear (continuous) function p,
each piece having integer coefficients. This
is the easy part of McNaughton's theorem.
To get the converse direction, assuming the
function p: [0, 1]* — [0, 1] to be piecewise
linear with integer coefficients, one pro-
ceeds in several steps as follows.

First step. We partition the rn-cube
[0, 1}" into a complex ¢ of convex polyhedra
with rational vertices such that, over any
such polyhedron, the function p is linear.
Generalizing the familiar construction for
2-dimensional polyhedra (where one adds a
maximal set of diagonals) we can subdivide
¢ into a simplicial complex S without add-
ing new vertices. Using Minkowski's convex
body theorem, we can further subdivide 8
into a unimodular simplicial complex T in
other words, for each n-simplex T in 7 writ-
ing in homogeneous integer coordinates the
vertices of T, we obtainan (n + 1) x(m + 1)
integer valued matrix M. whose determi-
nant is equal to = 1.

Second step. We now construct the
family H(1) of Schauder hats of 7. By the
Schauder hat of T at vertex w we mean the
uniquely determined piecewise linear con-
tinuous function % such that Al{w) = 1/d
{where d is the least common denominator
of the homogeneous integer coordinates of
w), hlv) = 0 for every vertex v of 7 other
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than w, and A coincides with a linear func-
tion A, over each n-simplex T of 7. As an
equivalent reformulation of the unimo-
dularity property, the coefficients of the lin-
ear polynomial representing %, are integers.
An easy lemma, first proved by McNaugh-
ton, and then simplified by Rose and
Rosser, yields a formula ¢, representing 4,
over T. A routine min-max argument now
shows that all Schauder hat functions are
representable by formulas, and therefore p
can be expressed as a disjunction (sum) of
Schauder hat formulas. We naturally re-
gard the formulas representing the funec-
tions in H(7) as the basic constituents of a
DNF reduction of p.

Third step. To grasp the connection
with toric varieties, upon writing in homo-
geneous integer coordinates the vertices of
each simplex 7" in 7, we obtain a complex A
of simplicial cones, also known as a fan. As
one more equivalent reformulation of the
unimodularity of T we can say that A is
"regular" or "non-singular”. By the well
known vocabulary of toric geometry [38, p.
329-3301, (smooth) toric varieties correspond
to (regular) fans, and hence to (unimodular)
simplicial complexes of the above kind. It
follows {73] that desingularizing a toric va-
riety amounts to subdividing a complex into
a unimodular simplicial complex, precisely
as is done to compute DNF reductions of
McNaughton functions. Our desingulari-
zation algorithms, arising from DNF reduc-
tion algorithms in infinite-valued logie,
yield tight estimates of the Euler character-
istic of desingularizations of low dimen-
sional toric varieties [2]. Further, Panti [85)
gives a geometric proof of Chang's complete-
ness theorem using the De Concini-Procesi
theorem on -elimination of points of indeter-
minacy [38, p. 252].

For their proof De Concini and
Procesi used a special starring procedure
{along two-dimensional cones) yvielding finer
and finer subdivisions. Iterated application
of the same procedure now yields:

Theorem 2.4 Let A be a non-singu-
lar fan and |A| the set-theoretic union of
its cones. Then there is a sequence

A<A <A <. (3)

of star subdivisions of A such that every
piecewise homogeneous linear functions f
with integer coefficients over Al isa A -lin-
ear support function', in symbaols f e SF(A )
for some n,

Corollary 2.5 The above sequence
(3) generates a direct system of simplicial
groups and positive homomorphisms @,
whose [imit s isomorphic to the lattice-or-
dered abelian group G, of all piecewise ho-
mogeneous linear functions with integer
coefficients over (Al

2.3 Product, Partitions, Probability

As shown by recent research on
"generalized conjunctions” (also known as,
T-norms) [13], [49], [97], a substantial por-
tion of the expressive power needed for ap-
plications in many-valued logic and many-
valued probability theory would be provided
by a logic incorporating a product connec-
tive jointly with Lukasiewicz disjunction
and negation. In general, Lukasiewicz con-
junction does not satisfy this distributivity
law. The tautology problem of any such
logic will be significantly harder than for
the infinite-valued calculus of Lukasiewicz
which is co-NP-complete like its two-valued
counterpart [66].

Various authors have considered
many-valued logies with product (see, e.g.,
i64], [37], 171, 178] and [92]. In {77] the au-
thor does not define a new logic, but rather
investigates tensor products. This is the
bare minimum needed for Weierstrass-like
(if-then-else) approximations of continuous
[0, 1]-valued functions, in terms of disjunc-
tions of products i, ® a_ for a suitable par-
tition A, of the cube [0, 1]~

Introduced in [72] and [74], states
are the MV-algebraic generalization of fi-
nitely additive probability measures on
boolean algebras. States are also used in

e, fis linear over each cone of A and is inte-
ger-valued over each integer point of |af.

< 5 e



[41] for a probabilistic approach to Ulam
game. On the other hand, countably
infinitary operations are needed for the
development of MV-algebraic measure
theory. Accordingly, o-complete MV-alge-
bras and o-additive states are systemati-
cally used in the book by Riecan and
Neubrunn [97]. As shown by Riefan and
his School, many important reults of clas-
sical probability theory based on o-complete
boolean algebras and oc-fields of sets have
interesting MV-algebraic generalizations.
One more example can be found in [77].

While the theory of c-additive MV-
algebraic states is fairly well understood,
random variables (alias, observables) still
lack a definitive systematization in the con-
text of MV-algebras. A number of technical
problems, also involving product and infi-
nite distributive laws are posed by the
theory of continuous functions of several
(joint) MV-algebraic observables. (See [91]-
[96] for interesting positive results). A use-
ful tool for understanding such observables
is given by the MV-algebraic generalization
of the notion of boolean partition [741, [75].
An MV-partition in A is a multiset of lin-
early independent elements of A whose sum
equals 1. As noted above, this definition
makes sense, by referring to the underly-
ing Z-module structure of the unique
/-group G with unit 1 given by T(G, 1) = A.
The joint refinability of any two MV-alge-
braic partitions on an MV-algebra A de-
pends on the ultrasimplicial property of its
associated Zgroup G, in the sense that ev-
ery finite set in G* is contained in the
monoid generated by some basis B < G*,
i.e., a set B of positive elements that are
independent in the Z-module G. When G is
countable, an equivalent reformulation of
this property is that G is the limit of an
ascending sequence of free abelian groups
of finite rank with product ordering, and
one-one monotone homomorphisms. After
some partial results of Elliott, Handelman
and others (see [6871, [66], [76], [81] and ref-
erences therein), recently Marra [6Q] has
proved the following

D. Mundieci. Many-valued logic: from foundations to applications.

Theorem 2.6 Evelyn Zgroup is ul-
trasimplicial

For further results concerning the
relationships between MV-algebras and
partially ordered groups, see [36], [42]-[45]
and [61]-[63].

2.4 MV-algebras and AF algebras

AF (approximately finite-dimensio-
nal) algebras, are currently used for the
mathematical description of infinite quan-
tum spin systems by operator algebras [46],
(70]. Despite their form a very small sub-
class of C*-algebras they are very interest-
ing mathematical objects.

As is well known, up to isomor-
phisms, the most general possible finite-di-
mensional C*-algebra 7 is a finite direct
sum A it M T M, where M . de-
notes the C*-algebra of all d(i} x d{i) com-
plex matrices, for suitable 1 < d(i).

An approximately finite-dimensio-
nal (for short, AF) algebra is the norm clo-
sure of the union of an ascending sequence
F € Fy & o BE finite-dimensional C#*-alge-
bras, with the same unit.

By a projection p in a C*-algebra A
we mean a self-adjoint idempotent p = p*
= p% Two projections p, ¢ € A are equiva-
lent iff there exists v € A such that vv* =
p and v*v = g. We denote by [p] the equiva-
lence class of p, and by L{(4)} the set of
equivalence classes of projections of 4. The
Murray-von Neumann order over L(A) is
defined by: {p] < [g] iff p is equivalent to a
projection r such that rg = r.

Elliott's partial addition is the par-
tial operation + on L({) obtained by add-
ing two projections whenever they are or-
thogonal. Then + is associative, commuta-
tive, monotone, and satisfies the following
residuation property: For every projection
p € A, among all classes [g] such that {p]
+ [g] = [13] there is a smallest one, denoted
—[pl, namely the class [1, — pl.

Building on Elliott's classification
theory {35] along with [65], in [80] the au-
thors proved the following
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Theorem 2.7 In cvery AF algebra A
there is at most one extension of Elliott's
partial addition to an associative, commu-
tative, monotone operation ® over the whole
L{A) having the above residuation property.
Such extension @ exists iff L(A) is a lattice.
Further, letting x ® y = —(—x @ —), and
KA) = (LA, 0], [1,], —, &, @) the map A
= K(A) is ¢ one-one correspondence be-
tween isomorphism classes of AF algebras
whose L(A) is lattice-ordered, and isomor-
phism classes of countable MV algebras.

In particular, the above map sends
isomorphisms classes of commutative AF
algebras one one onto isomorphism classes
of countable Boolean algebrastZ,

An AF algebra .4, has a lattice-or-
dered L(A) iff its (Grothendieck) K -group
is lattice-ordered. Thus the above corre-
spondence is functorial and preserves much
of the MV-algebraic structure. For in-
stance, the finitely additive states of any
MV-algebra are in one one correspondence
with tracial states of its corresponding AF
algebra [72, T4].

In the converse direction, to see
how an AF algebra with lattice-ordered
K,-group can be approximated by its finite-
dimensional subalgebras, one can work in
a much simpler MV-algebraic set up, or
else, transfer to £groups the Schauder hat
machinery developed for MV-algebraic
DNF reductions. From the ultrasimplicial
property of every £group C one gets, when
G is countable and has a distinguished
strong unit «, a sequence @: Z" — Z%+1 of
simplicial groups with strong units, and
positive unit preserving homomorphism
which, via the K, functor, yields an ascend-
ing sequence of finite-dimensional subalge-
bras whose union is dense in the AF alge-
bra corresponding to (G, u). Note that ¢, is
a positive matrix with integer entries.

Going backwards through the com-
posite functor I' o K one can construct from
the free MV-algebra F over countably many
generators, a "free” AF algebra X, inherit-
ing the universal properties of F. In par-

2 gee [30] for other particular cases of the ahove
correspondence.

ticular, every AF algebra with lattice-or-
dered K -group is a quotient of / [65].

Computations of AF algebras

Using the composite functor T" o K,
every AF algebra ¢ with lattice-ordered
K (&) can be presented as a sequence of
strings of symbols —the Lindenbaum alge-
bra of some theory © in the infinite-valued
calculus. From © one can uniquely recover
£. The complexity of the decision problem
of @ measures the complexity of £. While,
as proved in [66], the tautology problem for
the infinite-valued calculus in co-NP com-
plete, many AF algebras in the literature
have polynomial time complexity.

Let © be a theory (i.e., a deductively
closed set of formulas) in the infinite-val-
ued calculus of Lukasiewicz . We say that
© is prime if, for every pair of formulas o,
B, eithera— Be O,or f— e ©. As shown
by Chang [15, Lemma 1], © is prime iff its
Lindenbaum MV-algebra (whose elements
are the propositional formulas modulo ©) is
totally ordered. Let FORM  denote the set
of all formulas whose propositional vari-
ables are among X, ..., X . Let FORM de-
note the set of all formulas. In [82] the fol-
lowing result was proved:

Theorem 2.8 Fix an integer n > 1,
and let @ ¢ FORM  be a recursively enu-
merable prime theory in the infinite-valued
calculus of Fukasiewic: Then © is decid-
able. By contrast, there exists an undeci-
dable recursively enumerable prime theory
Y ¢ FORM.

Thus the phenomenon of Gédel in-
completeness is impossible in prime infi-
nite-valued theories and, module the com-
posite functor T o K, 1t is also impossible
in AF algebras whose Murray von Neu-
mann order of projections is total.

One can alse investigate comput-
ability issues on AF algebras using their
representations via diagrams. As a prelimi-
nary step one can naturally ask for algo-
rithms deciding when two sequences of
positive integer matrices @, represent iso-
morphic AT algebras. As shown in [11],
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[12], for those stable AF algebras arising
from a constant sequence of integer matri-
ces 9= ¢, = @, ..., there is a Turing ma-
chine which, having in its input two ma-
trices @' and ¢'' decides in a finite number
of steps whether the corresponding stable
AF algebras are isomorphic.

As remarked above, every non-sin-
gular fan A naturally generates a Bratelli
diagram, whose matrices correspond to the
starring subdivisions in a suitable De
Concini-Procesi elimination procedure for
points of indeterminacy in {(the toric vari-
ety corresponding to) A. We can then prove
the undecidability of the isomorphism prob-
lem for the resulting class of stable AF al-
gebras. The problem is equivalent to the
isomorphism problem for the Lindenbaum
algebras of two finitely axiomatizable theo-
ries in the infinite-valued calculus of
Yukasiewicz,

Closing a circle of ideas, with refer-
ence to Theorem 2.4 and to Corollary 2.5,
Elliott's classification now yield

Corollary 2.9 Regarding the posi-
tive homomorphism ¢, as embeddings of
finite-dimensional C*-algebras, we get from
(3) a stable AF algebra A, whose Murray
von Neumann equivalence classes of projec-
tions form a lattice. Further G, = K (A4,).

Regarding the ¢ as refinement
morphisms of MV-partitions, for every
choice of a strong unit u in G, we get a
countable MV-algebra M, = I(G,, u).
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