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Resumen

Hemos investigado la dindmica de un modelo simple de satélite galdetico median-
te los exponentes de Liapunov de sus drbitas, hallandoe que un alto porcentaje de ellas
(24,1%) son cadticas. Todas las dérbitas obedecen la integral de Jacobi pero, ademds, los
exponentes de Liapunov revelan la existencia de otras dos integrales (o pseudo integrales)
aislantes. El que una érbita dada pueda estar condicionada por una, o las dos, de dichas
integrales depende del valor de la integral de Jacobi para dicha 6rbita.
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Abstract

We investigated the dynamics of a simple model of galactic satellite through the
Liapunov exponents of its orbits, and we found that a high percentage (24,1%) of them are
chaotic. All the orbits obey the Jacobi integral but, besides, the existence of two additional
isolating integrals (or pseudo integrals) is revealed by the Liapunov exponents. Whether
an orbit may be limited by one, or both, of those two integrals depends on the value of the

Jacobi integral for that orbit.
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1. Introduction

The dynamics of the stars that make
up a galactic'satellite (i.e., a small stellar sys-
tem in orbit within a larger one) pose an in-
teresting problem and Carpintero et al. [1999
and 2002] and Muzzio et al. [2000a, 2000b and
2001] have found significant chaotic motions
in several models of such systems, Most of

Trabajo preseniado con motive de la
entrega del premio "José Luis Sérsic" en
Astronomia, el 10 de noviermnbre de 2000.

those investigations classified the orbits by
means of the frecuency analysis code of
Carpintero and Aguilar [1998] and made only
a limited use of the Liapunov exponents [see,
e.g., Lichtenberg and Lieberman 1992] to
characterize the chaotic motions. While ob-
taining Liapunov exponents is much more
computationally demanding than frecuency
analysis, the former provide additional infor-
mation on the chaotic orbits (alternatively, the
latter allows the classification of the regular
orbits).

Here we present an example of how
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the Liapunov exponents can help us to gain
insight on the chaotic dynamics of galactic
satellites.

2. Model and method

We chose the simplest possible model
of a galactic satellite placing a Plummer (or
Schuster) sphere {Binney and Tremaine,
1987] on a circular orbit inside a galaxy rep-
resented by a logarithmic potential [Muzzio
et al. 2000b}. The equations of motion and the
Jacobi integral are given by Carpintero et al.
[1999] for a modified Satoh (rather than
Plummer) potential. It suffices toe make g go
to zero and h to infinity (with the product 2gh
going to the square of the softening param-
eter of the Plummer sphere) in their equa-
tions to get the corresponding equations for
the Plummer sphere. While the model is not
very realistic, because galactic satellites are
affected by tidal forees and cannot be spheri-
cal, it helps to bridge the gap between more
realistic models and the three-body problem
of celestial mechanics, where chaos had al-
ready been reported by Jefferys [1966] and
Hénon [1966a and bi.

We adopted a gravitational constant
G =1, a satellite mass M = 1 and a softening
parameter for the Plummer sphere b = 0.229;
the orbit of the satellite has a radius R = 100
and an angular velocity ® = 0.5, resulting in
a tadal radius r, = 1.26 for the satellite. Since
the orbit is circular, the Jacobi integral (i.e.
the energy integral in the rotating system
centered on the satellite) holds. We chose the
additive constant of the potential so that the
potential is zero at the tidal radius (i.e., with
this choice the Jacobi integral must be nega-
tive to have bound orbits). As in our previous
papers, we divide the values of the Jacobi
integral by the value of the potential at the

center of the satellite, thus getiing an

adimensional parameter, that we dub reduced
energy, to characterize the orbits. The range
of the reduced energy goes from 0 (for a star
on the verge of becoming unbound) to 1 (for a
star resting at the center of the satellite). Note
that, as the potential at the center of the sat-
ellite is negative, low values of the reduced
energy correspond to loosely bound orbits and
high values to strongly bound ones (ie., the
reduced energy increases when the Jacobi

integral decreases and viceversa).

We computed the Liapunov exponents
using the LTAMAG routine, kindly made
available to us by D. Pfenniger, which uses
the method of Benettin et al. {1980]. It is worth
recalling that, since numerical integrations
extend over a finite time interval while the
Liapunov exponents are defined for an infi-
nite span, we can only obtain approximate
values which may differ somewhat from the
theoretical ones. For example, since ours is
an autonomous Hamiltonian system, two of
the six Liapunov exponents must be zero,
while the other four are grouped in two pairs
whose members have the same absolute value,
but opposite signs. One, or both, of those pairs
can also have zero value: in the former case
(as well as when all four exponents are non-
zero} we have a chaotic orbit, while in the lat-
ter we have a regular one. The existence of at
least one pair of zero Liapunov exponents is
due to the Jacobi integral, and each additional
pair of zero values reveals the presence of
another isolating integral (or pseudo-integral)
of motion. Nevertheless, numerically eom-
puted Liapunov exponents are never equal to
zero: as the integration time increases, they
either stabilize near a non-zero value (cha-
otic cases), or go on decreasing without never
reaching zero for finite integration times
(regular cases).

We used the distribution function of
the Plummer model [see, e.g., Binney and
Tremaine 1987] and a random number gen-
erator to create initial positions and veloci-
ties for the orbits; a cut-off was imposed so
that, after placing the satellite on iis orbit,
no initial condition could fall beyond the zero-
value equipotential or yield a positive value
of the Jacobi integral. A total of 1,000 initial
conditions were generated in this way and the
corresponding orbits were integrated over a
time interval of 35,000 units with the
LIAMAG routine; the renormalization inter-
val was set at 3.5 units.

3. Results

Figures 1, 2 and 3 show our results
as a function of the reduced energy: L1, 1.2
and L3 stand, respectively, for the highest,
intermediate and lowest positive values of the
computed Liapunov exponents (recall that, in
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theory, the lowest value should always be zero
and that the difference is due to the numeri-
cal approximation enly). We notice that the
three exponents are essentially zero for all the
orbits with large reduced energy values, L1
is not zero for many orbits with intermediate
energies, and both L1 and L2 are not zero for
many orbits with low reduced energy values.

More quantitative results can be ob-
tained as follows. Since, as explained, numeri-
cally compuied Liapunov exponents are al-
ways larger than zero, we can establish a lim-
iting value above which the exponents can be
regarded as clearly non-zero and below which
they can be taken as bona fide zero values.
Figure 3 suggests that such limiting value can
be taken as about 0.0005 and further confir-
mation can be obtained computing the aver-
age values and the dispersions of the Liapunov
exponents that fall below that limit: they
turned out to be 0.000357 + 0.000001 (o =
$0.000021), 0.000294 + 0.000002 (o =
+0.000047) and 0.000218 + 0.000002 (o =
+0.000061), respectively for 1.1, L2 and L3, so
that the adopted limit falls beyond three or
four times the dispersion from those mean
values, confirming that it is a reasonable
choice.

Overall, we find that 24.1% of the or-
bits have L1 > 0.0005 and can thus be classi-
fied as chaotic; moreover, 16.2% have both L1
and L2 larger than 0.0005, so that they are
not only chaotic but they have no other iso-
lating integral than the one of Jacobi. There
are o Liapunov exponents larger than 0.0005
for reduced energy values in excess of 0.695,
and all the cases with L2 > 0.0005 correspond
to reduced energy values smaller than 0.382.

Muzzio et al. [2000a] suggested that
the origin of the chaotic motions is the inter-
action of the three forces that are present in
the system: the attraction by the satellite it-
self, the centripetal-centrifugal force and the
Coriolis force; the last two are, of course, due
to the orbital motion of the satellite within
the larger galaxy. In particular, Muzzio et al.
[2000al indicated that the interaction between
the attraction from the satellite and the Co-
riolis force may be the cause of the chaotic
motions observed at intermediate reduced
energy values, because the velocities (on
which the Coriolis force depends) increase

J.C. Muzzio. Chaos in a simple dynamical system.

towards the center of the satellite and the
centripetal-centrifugal force is relevant in its
outermost regions only. This idea can be eas-
ily checked with our numerical experiments,
repeating the computations after having ar-
tificially suppressed the terms of the Coriolis
force in the LIAMAG routine; since the Jacobi
integral does not depend on the Coriolis force,
an orbit is characterized by the same reduced
energy value irrespective of whether the Co-
riolis force has been included in the integra-
tion or not. Figure 4 presents our results and
we notice that, with the Coriolis force sup-
pressed, not a single orbit with reduced en-
ergy larger than 0.216 has any non-zero
(within the numerical approximation)
Liapunov exponent; besides, only some orbits
with reduced energies lower than 0,174 have
two non-zero Liapunov exponents. Clearly, the
Coriolis force has a dominant role in the on-
set of chaos at intermediate reduced energy
values. Alternatively, it seems to have a sooth-
ing influence on the chaotic orbits with low
reduced energy values, because the Liapunov
exponents for those orbits increased by about
50% after we suppressed the Coriolis force
from our computations,

4. Discussion ‘

Our results prove that chaotic motions
are very significant in this simple model, not
only for the large percentage of chaotic orbits
present, but also for the large values of the
Liapunov exponents we found. The inverses
of those exponents give the Liapunov times,
which provide the time scales characteristic
of the corresponding chaotic processes. Here
we have a couple of Liapunov times as short
as 11 (L1 = 0.09), and the bulk of them are
shorter than 100 (L1 = 0.01) for chaotic or-
bits; since periods for circular orbits in the
isolated Plummer sphere range from 0.7 at
its center to 9.1 at the tidal radius, we see
that chaotic effects become significant after
between about 1 and 100 orbital periods only.
These short Liapunov times compare favor-
ably, not only with the age of galactic satel-
lites (of the order of 1,000 in our units), but
even with the relaxation times of globular
clusters (of the order of 100 in our units). Thus,
our simple model shows that chaotic motions
may be important enough’in galactic satel-
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Fig. 1. Computed Liapunov exponents vs. the reduced orbital energy. L1, L2 and L3 stand, respectively,
for the largest, the intermediate and the lowest positive Liapunov exponents.
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Fig. 2. Same as Figure 1, with the ordinate scale expanded to display more clearly the L2 values.
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Fig. 3. Same as Figure 1, with the ordinate scale expanded to display more clearly
the essentially zero values.
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Fig. 4. Same as Figure 1, but the Liapunov exponents were obtained after
artificially suppressing the Coriolis force.
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lites to yield observational effects.

From a purely theoretical point of
view, it is interesting how the value of the re-
duced energy allows us to distinguish regions
where the motion may be chaotic, obeying only
the Jacobi integral (low values), from those
where it still may be chaotic, but obeying also
a second integral or pseudo-integral (interme-
diate values}, and those where it is fully regu-
lar, obeying three integrals or pseudo integrals
(high values). The present result is, in a way,
an extension to three dimensions of the clas-
sical result of Hénon and Heiles [1964] who,
in a two dimensional potential, found that
chaos set in for large energy values.

Our results also confirm the sugges-
tion of Muzzio et al. {2000a] that the interac-
tion of the Coriolis force and the attractive
force of the cluster is the cause of the onset of
chaos at intermediate reduced energy values.
Nevertheless, even after artificially suppress-
ing the Coriolis force, the Jacobi integral is
the only iselating inteegral for reduced ener-
gies lower than 0.174 and there still remains
a thin range of reduced energy (between 0.174
and 0.216) where a second integral may be
present. Large reduced energy values corre-
spond to-orbits bound to the innermost regions
of the satellite, where the centripetal-centrifu-
gal force is weak. Therefore, it 1s reasonable
to find only regular motions for those reduced
energy values because the (fully integrable)
attractive force from the satellite remains as
the single relevant one in those regions after
the Coriolis force is suppressed. Alternatively,
orbits with low reduced energy values can
reach large distances from the center of the
satellite. In those outermost regions the cen-
tripetal-centrifugal force is comparable to the
attractive force from the satellite (they become
equal at the tidal radius) so that, in all likeli-
hood, it is from the interplay between these
two forces that the chaotic motions found at
low reduced energy values arise. The influ-
ence of the Coriolis force is also present at
those low values, but it seems to have a stabi-
lizing effect, rather than favoring the onset of
chaos as it does for intermediate values since,
for low reduced energy values, the Liapunov
exponents become higher when the Coriolis
force is suppressed. This stabilizing effect may
have some relationship to the well known fact

that the Coriolis force helps to keep distant
satellites bound [that is why planetary satel-
lites can have much larger orbits if they have
retrograde, rather than direct, motion; see,
e.g., Innanen 1979].
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